Advertisements
Advertisements
Question
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
Solution
Let interior angle = x
Then exterior angle = x + 60
∴ x + x + 60° = 180°
⇒ 2x = 180° - 60° = 120°
⇒ x = `(120°)/2 = 60°`
∴ Exterior angle = 60° + 60° = 120°
∴ Number of sides = `(360°)/(120°) = 3`
APPEARS IN
RELATED QUESTIONS
Is it possible to have a regular polygon whose each exterior angle is: 80°
Find the number of sides in a regular polygon, if its interior angle is equal to its exterior angle.
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.
Find the number of sides in a regular polygon, if its interior angle is: 150°
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose exterior angle is: 100°