Advertisements
Advertisements
Question
Find the number of sides in a regular polygon, if its interior angle is equal to its exterior angle.
Solution
Let each exterior angle or interior angle be = x°
∴ x + x = 180°
2x = 180°
x = 90°
Now, let no. of sides = n
∵ each exterior angle = `360^circ/"n"`
∴ 90° = `360^circ/"n"`
n = `360^circ/90^circ`
n = 4
APPEARS IN
RELATED QUESTIONS
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
Find the number of sides in a regular polygon, if its interior angle is: 160°
Find the number of sides in a regular polygon, if its exterior angle is : `1/3` of right angle
Find the number of sides in a regular polygon, if its exterior angle is: two-fifth of right angle
Is it possible to have a regular polygon whose interior angle is:
138°
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
Is it possible to have a regular polygon whose exterior angle is: 100°