Advertisements
Advertisements
Question
Is it possible to have a regular polygon whose each exterior angle is: 80°
Solution
Let no. of sides = n each exterior angle = 80°
`360^circ/"n" = 80^circ`
`"n" = 360^circ/80^circ`
n = `9/2`
Which is not a whole number.
Hence it is not possible to have a regular polygon whose each exterior angle is of 80°
APPEARS IN
RELATED QUESTIONS
Find the number of sides in a regular polygon, if its interior angle is: 135°
Is it possible to have a regular polygon whose each exterior angle is: 40° of a right angle.
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
The ratio between the number of sides of two regular polygons is 3 : 4 and the ratio between the sum of their interior angles is 2 : 3. Find the number of sides in each polygon.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
Find the number of sides in a regular polygon, if its interior angle is: 150°
Find a number of side in a regular polygon, if it exterior angle is: 30°.