Advertisements
Advertisements
Question
Find the number of sides in a regular polygon, if its interior angle is: 135°
Solution
No. of. sides = n
Each interior angle = 135°
`("n" - 2)/"n" xx 180^circ = 135^circ`
180n - 360° = 135n
180n - 135n = 360°
45n = 360°
n = 8
APPEARS IN
RELATED QUESTIONS
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of:
(i) ∠BAE
(ii) ∠ABE
(iii) ∠BED
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
The ratio between the number of sides of two regular polygons is 3 : 4 and the ratio between the sum of their interior angles is 2 : 3. Find the number of sides in each polygon.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Find number of side in a regular polygon, if it exterior angle is: 36
Is it possible to have a regular polygon whose interior angle is: 135°