Advertisements
Advertisements
Question
Find number of side in a regular polygon, if it exterior angle is: 36
Solution
Let no. of. sides = n
`therefore 360^circ/"n" = 36^circ`
n = `(360^circ)/(36^circ)`
n = 10
APPEARS IN
RELATED QUESTIONS
Find the number of sides in a regular polygon, if its exterior angle is: two-fifth of right angle
Is it possible to have a regular polygon whose interior angle is : 170°
Is it possible to have a regular polygon whose each exterior angle is: 80°
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of:
(i) ∠BAE
(ii) ∠ABE
(iii) ∠BED
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.
Is it possible to have a regular polygon whose exterior angle is: 36°