Advertisements
Advertisements
Question
Is it possible to have a regular polygon whose interior angle is : 170°
Solution
No. of sides = n
each interior angle = 170°
`therefore ("n" - 2)/"n" xx 180^circ = 170^circ`
180n - 360° = 170n
180n - 170n = 360°
10n = 360°
n = `(360°)/10`
n = 36
which is a whole number.
Hence it is possible to have a regular polygon
whose interior angle is 170°
APPEARS IN
RELATED QUESTIONS
Find the number of sides in a regular polygon, if its interior angle is: 135°
Find the number of sides in a regular polygon, if its exterior angle is: two-fifth of right angle
Is it possible to have a regular polygon whose interior angle is:
138°
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Three of the exterior angles of a hexagon are 40°, 51 ° and 86°. If each of the remaining exterior angles is x°, find the value of x.
The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose interior angle is: 135°
Is it possible to have a regular polygon whose exterior angle is: 100°