Advertisements
Advertisements
Question
Three of the exterior angles of a hexagon are 40°, 51 ° and 86°. If each of the remaining exterior angles is x°, find the value of x.
Solution
The sum of all exterior angles of any polygon is always: 360∘
The total of the six exterior angles is: 40∘ + 51∘ + 86∘ + x + x + x = 360∘
Simplify: 177∘ + 3x = 360∘
Subtract 177∘ from both sides: 3x = 183∘
Divide by 3: `x=(183°)/3 = 61°`
Each of the remaining three exterior angles is: 61∘
APPEARS IN
RELATED QUESTIONS
Is it possible to have a regular polygon whose interior angle is : 170°
Find the number of sides in a regular polygon, if its interior angle is equal to its exterior angle.
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.
Find the number of sides in a regular polygon, if its interior angle is: 150°
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose interior angle is: 155°
Is it possible to have a regular polygon whose exterior angle is: 36°