Advertisements
Advertisements
प्रश्न
Three of the exterior angles of a hexagon are 40°, 51 ° and 86°. If each of the remaining exterior angles is x°, find the value of x.
उत्तर
The sum of all exterior angles of any polygon is always: 360∘
The total of the six exterior angles is: 40∘ + 51∘ + 86∘ + x + x + x = 360∘
Simplify: 177∘ + 3x = 360∘
Subtract 177∘ from both sides: 3x = 183∘
Divide by 3: `x=(183°)/3 = 61°`
Each of the remaining three exterior angles is: 61∘
APPEARS IN
संबंधित प्रश्न
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
Find the number of sides in a regular polygon, if its interior angle is: 160°
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
The ratio between the interior angle and the exterior angle of a regular polygon is 2: 1. Find:
(i) each exterior angle of the polygon ;
(ii) number of sides in the polygon.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Find number of side in a regular polygon, if it exterior angle is: 36