Advertisements
Advertisements
प्रश्न
Find the number of sides in a regular polygon, if its interior angle is: 160°
उत्तर
Let no.of.sides of regular polygon be n.
Each interior angle = 160°
`therefore ("n" - 2)/"n" xx 180^circ = 160^circ`
180n - 360° = 160n
180n - 160n = 360°
20n = 360°
n = 18
संबंधित प्रश्न
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
Is it possible to have a regular polygon whose interior angle is : 170°
Is it possible to have a regular polygon whose each exterior angle is: 40° of a right angle.
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
If the difference between the exterior angle of a 'n' sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
Three of the exterior angles of a hexagon are 40°, 51 ° and 86°. If each of the remaining exterior angles is x°, find the value of x.
Calculate the number of sides of a regular polygon, if: the ratio between its exterior angle and interior angle is 2: 7.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.
Find the number of sides in a regular polygon, if its interior angle is: 150°
Is it possible to have a regular polygon whose interior angle is: 135°
Is it possible to have a regular polygon whose exterior angle is: 100°
Is it possible to have a regular polygon whose exterior angle is: 36°