Advertisements
Advertisements
प्रश्न
The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.
उत्तर
Let number of sides = n
Sum of exterior angles = 360°
Sum of interior angles = 360° x 2 = 720°
Sum of interior angles = (n – 2) x 180°
720° = (n – 2) x 180°
n – 2 =`720/180`
n – 2 = 4
n = 4 + 2
n = 6
APPEARS IN
संबंधित प्रश्न
Is it possible to have a regular polygon whose interior angle is : 170°
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
The ratio between the interior angle and the exterior angle of a regular polygon is 2: 1. Find:
(i) each exterior angle of the polygon ;
(ii) number of sides in the polygon.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Calculate the number of sides of a regular polygon, if: the ratio between its exterior angle and interior angle is 2: 7.
The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.
Find a number of side in a regular polygon, if it exterior angle is: 30°.