Advertisements
Advertisements
Question
The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.
Solution
Let number of sides = n
Sum of exterior angles = 360°
Sum of interior angles = 360° x 2 = 720°
Sum of interior angles = (n – 2) x 180°
720° = (n – 2) x 180°
n – 2 =`720/180`
n – 2 = 4
n = 4 + 2
n = 6
APPEARS IN
RELATED QUESTIONS
Find the number of sides in a regular polygon, if its exterior angle is : `1/3` of right angle
Is it possible to have a regular polygon whose interior angle is : 170°
Find the number of sides in a regular polygon, if its interior angle is equal to its exterior angle.
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
Is it possible to have a regular polygon whose interior angle is: 155°