Advertisements
Advertisements
Question
Is it possible to have a regular polygon whose interior angle is: 155°
Solution
No. of. sides = n
Each interior angle = 155°
∴ `(("2n" - 4) xx 90^circ)/"n" = 155^circ`
180n - 360° = 155n
180n - 155n = 360°
25n = 360°
n = `(360°)/(25°)`
n = `72^circ/5`
Which is not a whole number.
Hence, it is not possible to have a regular polygon whose interior angle is 155°.
APPEARS IN
RELATED QUESTIONS
Find the number of sides in a regular polygon, if its interior angle is: 160°
Find the number of sides in a regular polygon, if its exterior angle is : `1/3` of right angle
Find the number of sides in a regular polygon, if its exterior angle is: two-fifth of right angle
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose exterior angle is: 100°