Advertisements
Advertisements
Question
Is it possible to have a regular polygon whose interior angle is: 135°
Solution
No. of. sides = n
Each interior angle = 135°
∴ `(("2n" - 4) xx 90^circ)/"n" = 135^circ`
180n - 360° = 135n
180n - 135n = 360°
n = `(360°)/(45°)`
n = 8
Which is a whole number.
Hence, it is possible to have a regular polygon whose interior angle is 135°.
APPEARS IN
RELATED QUESTIONS
Find the number of sides in a regular polygon, if its interior angle is: 135°
Find the number of sides in a regular polygon, if its exterior angle is : `1/3` of right angle
Is it possible to have a regular polygon whose interior angle is:
138°
Is it possible to have a regular polygon whose each exterior angle is: 40° of a right angle.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose exterior angle is: 100°
Is it possible to have a regular polygon whose exterior angle is: 36°