Advertisements
Advertisements
प्रश्न
Is it possible to have a regular polygon whose interior angle is: 135°
उत्तर
No. of. sides = n
Each interior angle = 135°
∴ `(("2n" - 4) xx 90^circ)/"n" = 135^circ`
180n - 360° = 135n
180n - 135n = 360°
n = `(360°)/(45°)`
n = 8
Which is a whole number.
Hence, it is possible to have a regular polygon whose interior angle is 135°.
APPEARS IN
संबंधित प्रश्न
Find the number of sides in a regular polygon, if its interior angle is: 160°
Find the number of sides in a regular polygon, if its interior angle is: `1 1/5` of a right angle
Find the number of sides in a regular polygon, if its exterior angle is : `1/3` of right angle
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Three of the exterior angles of a hexagon are 40°, 51 ° and 86°. If each of the remaining exterior angles is x°, find the value of x.
The ratio between the number of sides of two regular polygons is 3 : 4 and the ratio between the sum of their interior angles is 2 : 3. Find the number of sides in each polygon.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.
Is it possible to have a regular polygon whose exterior angle is: 100°