Advertisements
Advertisements
Question
Find the number of sides in a regular polygon, if its interior angle is: 150°
Solution
Let no.of.sides of regular polygon be n.
Each interior angle = 150°
`therefore (("2n" - 4) xx 90^circ)/"n" = 150^circ`
180n - 360° = 150n
180n - 150n = 360°
30n = 360°
n = 12
APPEARS IN
RELATED QUESTIONS
Find the number of sides in a regular polygon, if its interior angle is: `1 1/5` of a right angle
Is it possible to have a regular polygon whose each exterior angle is: 80°
Is it possible to have a regular polygon whose each exterior angle is: 40° of a right angle.
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
The ratio between the interior angle and the exterior angle of a regular polygon is 2: 1. Find:
(i) each exterior angle of the polygon ;
(ii) number of sides in the polygon.
In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of:
(i) ∠BAE
(ii) ∠ABE
(iii) ∠BED
If the difference between the exterior angle of a 'n' sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
Is it possible to have a regular polygon whose exterior angle is: 100°
Is it possible to have a regular polygon whose exterior angle is: 36°