Advertisements
Advertisements
प्रश्न
Calculate the number of sides of a regular polygon, if: the ratio between its exterior angle and interior angle is 2: 7.
उत्तर
Ratio between exterior angle and interior angle = 2: 7
Let exterior angle = 2x
Then interior angle = 7x
∴ 2x + 7x = 180°
⇒ 9x = 180°
`=> "x" = (180°)/9 = 20°`
∴ Ext. angle = 2x = 2 × 20° = 40°
∴ No. of. sides = `(360°)/40 = 9`
APPEARS IN
संबंधित प्रश्न
Find the number of sides in a regular polygon, if its interior angle is: 160°
Find the number of sides in a regular polygon, if its interior angle is: 135°
Find the number of sides in a regular polygon, if its interior angle is: `1 1/5` of a right angle
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of:
(i) ∠BAE
(ii) ∠ABE
(iii) ∠BED
If the difference between the exterior angle of a 'n' sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
Three of the exterior angles of a hexagon are 40°, 51 ° and 86°. If each of the remaining exterior angles is x°, find the value of x.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Find the number of sides in a regular polygon, if its interior angle is: 150°
Is it possible to have a regular polygon whose exterior angle is: 100°