Advertisements
Advertisements
प्रश्न
Is it possible to store copper sulphate in an iron vessel for a long time?
Given: \[\ce{E^0_{{Cu^{2+}|{Cu}}}}\] = 0.34 V and \[\ce{E^0_{{Fe^{2+}|{Fe}}}}\] = −0.44 V
उत्तर
\[\ce{(E^0_{ox})_{{{Fe|{Fe^{2+}}}}}}\]= −0.44 V and \[\ce{(E^0_{red})_{{{Cu^{2+}|{Cu}}}}}\] = 0.34 V
These +ve emf values show that iron will oxidise and copper will get reduced i.e., the vessel will dissolve. Hence it is not possible to store copper sulphate in an iron vessel.
APPEARS IN
संबंधित प्रश्न
If one mole electrons is passed through the solutions of CrCl3, AgNO3 and NiSO4, in what ratio Cr, Ag and Ni will be deposited at the electrodes?
Consider the change in the oxidation state of Bromine corresponding to different emf values as shown in the diagram below:
\[\ce{BrO^-_4 ->[1.82 V] BrO^-_3 ->[1.5 V] HBrO ->[1.595 V] Br2 ->[1.0652 V] Br^-}\]
Then the species undergoing disproportionation is
Reduction potential of two metals M1 and M2 are \[\ce{E^0_{{M_1^{2+}|M_1}}}\] = −2.3 V and \[\ce{E^0_{{M_2^{2+}|M_2}}}\] = 0.2 V. Predict which one is better for coating the surface of iron.
Given: \[\ce{E^0_{{Fe^{2+}|Fe}}}\] = −0.44 V
Electrode potential for Mg electrode varies according to the equation
`E_(Mg^(2+) | Mg) = E_(Mg^(2+) | Mg)^Θ - 0.059/2 log 1/([Mg^(2+)])`. The graph of `E_(Mg^(2+) | Mg)` vs `log [Mg^(2+)]` is ______.
Which of the following statement is not correct about an inert electrode in a cell?
Use the data given in below find out which option the order of reducing power is correct.
`"E"_("Cr"_2"O"_7^(2-)//"Cr"^(3+))^⊖`= 1.33 V `"E"_("Cl"_2//"Cl"^-)^⊖` = 1.36 V
`"E"_("MnO"_4^-//"Mn"^(2+))^⊖` = 1.51 V `"E"_("Cr"^(3+)//"Cr")^⊖` = - 0.74 V
Which of the following statements about galvanic cell is incorrect
A current of 2.0 ampere passed for 5 hour through a molten salt deposits 22 g of the metal (Atomic mass = 177). The oxidation state of the metal in the metal salt is
Cell reaction is spontaneous when
In a Daniel cell, ______.