Advertisements
Advertisements
प्रश्न
किसी कार निर्माता द्वारा एक ही मॉडल की 50 कारों की माइलेज़ (अर्थात एक लीटर ईंधन में कितने km चलती हैं) की जाँच की, जिसके परिणाम नीचे सारणीबद्ध हैं:
माइलेज (km/L) |
10 – 12 |
12 – 14 |
14 – 16 |
16 – 18 |
कारों की संख्या |
7 |
12 |
18 |
13 |
माध्य माइलेज ज्ञात कीजिए। निर्माता यह दावा करता है कि इस माइलेज 16 km/L है। क्या आप इस दावे से सहमत है?
उत्तर
माइलेज (km/L) |
वर्ग चिह्न `(bb(x_i))` |
कारों की संख्या `(bb(f_i))` |
`bb(f_ix_i)` |
10 – 12 | 11 | 7 | 77 |
12 – 14 | 13 | 12 | 156 |
14 – 16 | 15 | 18 | 270 |
16 – 18 | 17 | 13 | 221 |
कुल | `sumf_i = 50` | `sumf_ix_i = 724` |
यहाँ, `sumf_i` = 50
और `sumf_ix_i` = 724
∴ माध्य `(barx) = (sumf_ix_i)/(sumf_i)`
= `724/50`
= 14.48
अतः, माध्य माइलेज 14.48 km/l है।
नहीं, निर्माता माध्य माइलेज से 1.52 km/h अधिक माइलेज का दावा कर रहा है।
APPEARS IN
संबंधित प्रश्न
विद्यार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अंतर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए। प्रति घर माध्य पौधों की संख्या ज्ञात कीजिए।
पौधों की संख्या | 0 - 2 | 2 - 4 | 4 - 6 | 6 - 8 | 8 - 10 | 10 - 12 | 12 - 14 |
घरों की संख्या | 1 | 2 | 1 | 5 | 6 | 2 | 3 |
माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों?
एक कारखाने के 50 श्रमिकों के दैनिक वेतन के निम्नलिखित वितरण पर विचार करें।
दैनिक मजदूरी (रुपये में) |
500 - 520 |
520 - 540 |
540 - 560 |
560 - 580 |
580 - 600 |
श्रमिकों की संख्या | 12 |
14 |
8 |
6 |
10 |
एक उपयुक्त विधि का उपयोग करके कारखाने के श्रमिकों की औसत दैनिक मजदूरी ज्ञात कीजिए।
किसी फुटकर बाजार में, फल विक्रेता पेटियों में रखे आम बेच रहे थे। इन पेटियों में आमों की संख्याएँ भिन्न-भिन्न थी। पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था:
आम की संख्या | 50 − 52 | 53 − 55 | 56 − 58 | 59 − 61 | 62 − 64 |
बक्सों की संख्या | 15 | 110 | 135 | 115 | 25 |
एक पैकिंग बॉक्स में रखे आमों की औसत संख्या ज्ञात कीजिए। आपने माध्य ज्ञात करने का कौन सा तरीका चुना?
वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए, सूत्र `barx = a + (f_i d_i)/f_i` में di निम्नलिखित के a से विचलन है:
वर्गीकृत आँकड़ों का माध्य अभिकलित करते समय, हम यह कल्पना करते हैं कि बारंबारताएँ ______।
यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है।
निम्नलिखित बंटन का माध्य ज्ञात कीजिए :
वर्ग |
1 – 3 |
3 – 5 |
5 – 7 |
7 – 10 |
बारंबारता |
9 |
22 |
27 |
17 |
निम्नलिखित आँकड़ों का माध्य परिकलित कीजिए :
वर्ग |
4 – 7 |
8 – 11 |
12 – 15 |
16 – 19 |
बारंबारता |
5 |
4 |
9 | 10 |
50 पहलवानों के भार (kg में) नीचे सारणी में दिये हैं:
भार (kg में) |
100 – 110 |
110 – 120 |
120 – 130 |
130 – 140 |
140 – 150 |
पहलवानों की संख्या |
4 |
14 |
21 |
8 |
3 |
इन पहलवानों का माध्य भार ज्ञात कीजिए।
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) |
पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन पैकेटों का माध्य भार ज्ञात कीजिए।