Advertisements
Advertisements
प्रश्न
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) |
पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन पैकेटों का माध्य भार ज्ञात कीजिए।
उत्तर
सबसे पहले, हम दिए गए डेटा के वर्ग चिह्न निम्नानुसार पाते है।
भार |
पैकेटों की संख्या |
वर्ग चिह्न |
विचलन |
`bb(f_i d_i)`
|
200 – 201 |
13 |
200.5 |
– 3 |
– 39 |
201 – 202 |
27 |
201.5 |
– 2 |
– 54 |
202 – 203 |
18 |
202.5 |
– 1 |
– 18 |
203 – 204 |
10 |
a = 203.5 |
0 |
0 |
204 – 205 |
1 |
204.5 |
1 |
1 |
205 – 206 |
1 |
205.5 |
2 |
2 |
|
`N = sumf_i = 70`
|
|
|
`sumf_i d_i = -108`
|
यहाँ, (माध्य मान लें) a = 203.5
और (वर्ग चौड़ाई) h = 1
कल्पित माध्य विधि से,
माध्य `(barx) = a + (sumf_i d_i)/(sumf_i)`
= `203.5 - 108/70`
= 203.5 – 1.54
= 201.96
अतः, आवश्यक औसत वजन 201.96 ग्राम है।
APPEARS IN
संबंधित प्रश्न
किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:
हृदय स्पंदन की प्रति मिनट संख्या | 65 - 68 | 68 - 71 | 71 - 74 | 74 - 77 | 77 - 80 | 80 - 83 | 83 - 86 |
महिलाओं की संख्या | 2 | 4 | 3 | 8 | 7 | 4 | 2 |
निम्न तालिका 35 शहरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए:
साक्षरता दर (% में) | 45 − 55 | 55 − 65 | 65 − 75 | 75 − 85 | 85 − 95 |
शहरों की संख्या | 3 | 10 | 11 | 8 | 3 |
यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है।
वर्गीकृत आँकड़ों की ‘से कम प्रकार' और 'से अधिक प्रकार' की संचयी बारंबारता वक्रों के प्रतिच्छेद बिंदु के भुज से आंकड़ों का प्राप्त होना है:
वर्गीकृत आँकड़ों का माध्य परिकलित करने के लिए, हम सूत्र `barx = a + (sumf_i d_i)/(sumf_i)` का प्रयोग कर सकते है, जब सभी वर्गों की वर्गमाप बराबर हैं, a कल्पित माध्य है तथा a को वर्गों के मध्य-बिंदुओं में से कोई एक होना चाहिए। क्या अंतिम कथन सत्य है? अपने उत्तर का औचित्य दीजिए।
एक गणित टेस्ट में 20 विद्यार्थियों के निम्नलिखित प्राप्तांकों का माध्य ज्ञात कीजिए :
प्राप्तांक |
10 – 20 |
20 – 30 |
30 – 40 |
40 – 50 |
50 – 60 |
विद्यर्थियों की संख्या |
2 |
4 |
7 |
6 |
1 |
निम्नलिखित आँकड़ों का माध्य परिकलित कीजिए :
वर्ग |
4 – 7 |
8 – 11 |
12 – 15 |
16 – 19 |
बारंबारता |
5 |
4 |
9 | 10 |
50 कर्मचारियों के एक प्रतिदर्श की दैनिक आय निम्नलिखित रूप में सारणीबद्ध है:
आय (रु में) |
1 – 200 |
201 – 400 |
401 – 600 |
601 – 800 |
कर्मचारियों की संख्या |
14 | 15 | 14 | 7 |
कर्मचारियों की माध्य दैनिक आय ज्ञात कीजिए।
निम्नलिखित बंटन का माध्य निर्धारित कीजिए:
प्राप्तांक | विद्यार्थियों की संख्या |
10 से कम | 5 |
20 से कम | 9 |
30 से कम | 17 |
40 से कम | 29 |
50 से कम | 45 |
60 से कम | 60 |
70 से कम | 70 |
80 से कम | 78 |
90 से कम | 83 |
100 से कम | 85 |
निम्नलिखित बारंबारता बंटन का माध्य 50 है, परंतु 20 – 40 और 60 – 80 वर्गों की बारंबारताएँ क्रमशः f1 और f2 ज्ञात नहीं हैं। ये बारंबारताएँ ज्ञात कीजिए, यदि सभी बारंबारताओं का योग 120 है।
वर्ग |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
बारंबारता |
17 |
f1
|
32 |
f2
|
19 |