मराठी

70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं: भार (ग्राम में) पैकेटों की संख्या 200 – 201 13 201 – 202 27 202 – 203 18 203 – 204 10 204 – 205 1 205 – 206 1 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में)

पैकेटों की संख्या

200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन पैकेटों का माध्य भार ज्ञात कीजिए।

तक्ता
बेरीज

उत्तर

सबसे पहले, हम दिए गए डेटा के वर्ग चिह्न निम्नानुसार पाते है।

भार
(ग्राम में)

पैकेटों की संख्या
`(bb(f_i))`

वर्ग चिह्न
`(bb(x_i))`

विचलन
​`(bb(d_i = x_i - a))`​

`bb(​f_i d_i)`​

200 – 201

13

200.5

– 3

– 39

201 – 202

27

201.5

– 2

– 54

202 – 203

18

202.5

– 1

– 18

203 – 204

10

a = 203.5

0

0

204 – 205

1

204.5

1

1

205 – 206

1

205.5

2

2

 
​`N = sumf_i = 70`​
 
 
​`sumf_i d_i = -108`​

यहाँ, (माध्य मान लें) a = 203.5

और (वर्ग चौड़ाई) h = 1

कल्पित माध्य विधि से,

माध्य `(barx) = a + (sumf_i d_i)/(sumf_i)`

= `203.5 - 108/70`

= 203.5 – 1.54

= 201.96

अतः, आवश्यक औसत वजन 201.96 ग्राम है।

shaalaa.com
वर्गीकृत आँकड़ों का माध्य
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: साँख्यिकी और प्रायिकता - प्रश्नावली 13.4 [पृष्ठ १८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 13 साँख्यिकी और प्रायिकता
प्रश्नावली 13.4 | Q 4. | पृष्ठ १८२

संबंधित प्रश्‍न

किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:

हृदय स्पंदन की प्रति मिनट संख्या 65 - 68 68 - 71 71 - 74 74 - 77 77 - 80 80 - 83 83 - 86
महिलाओं की संख्या 2 4 3 8 7 4 2

निम्न तालिका 35 शहरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए:

साक्षरता दर (% में) 45 − 55 55 − 65 65 − 75 75 − 85 85 − 95
शहरों की संख्या 3 10 11 8 3

यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है। 


वर्गीकृत आँकड़ों की ‘से कम प्रकार' और 'से अधिक प्रकार' की संचयी बारंबारता वक्रों के प्रतिच्छेद बिंदु के भुज से आंकड़ों का प्राप्त होना है: 


वर्गीकृत आँकड़ों का माध्य परिकलित करने के लिए, हम सूत्र `barx = a + (sumf_i d_i)/(sumf_i)` का प्रयोग कर सकते है, जब सभी वर्गों की वर्गमाप बराबर हैं, a कल्पित माध्य है तथा a को वर्गों के मध्य-बिंदुओं में से कोई एक होना चाहिए। क्या अंतिम कथन सत्य है? अपने उत्तर का औचित्य दीजिए।


एक गणित टेस्ट में 20 विद्यार्थियों के  निम्नलिखित प्राप्तांकों का माध्य ज्ञात कीजिए :

प्राप्तांक

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

विद्यर्थियों की संख्या

2

4

7

6

1


निम्नलिखित आँकड़ों का माध्य परिकलित कीजिए :

वर्ग

4 – 7

8 – 11

12 – 15

16 – 19

बारंबारता

5

4

9 10

50 कर्मचारियों के एक प्रतिदर्श की दैनिक आय निम्नलिखित रूप में सारणीबद्ध है:

आय (रु में)

1 – 200

201 – 400

401 – 600

601 – 800

कर्मचारियों की संख्या

14 15 14 7

कर्मचारियों की माध्य दैनिक आय ज्ञात कीजिए। 


निम्नलिखित बंटन का माध्य निर्धारित कीजिए:

प्राप्तांक विद्यार्थियों की संख्या
10 से कम 5
20 से कम 9
30 से कम 17
40 से कम 29
50 से कम 45
60 से कम 60
70 से कम 70
80 से कम 78
90 से कम 83
100 से कम 85

निम्नलिखित बारंबारता बंटन का माध्य 50 है, परंतु 20 – 40 और 60 – 80 वर्गों की बारंबारताएँ क्रमशः f1 और f2 ज्ञात नहीं हैं। ये बारंबारताएँ ज्ञात कीजिए, यदि सभी बारंबारताओं का योग 120 है। 

वर्ग

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

बारंबारता

17

f1

32

f2

19


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×