Advertisements
Advertisements
प्रश्न
निम्न तालिका 35 शहरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए:
साक्षरता दर (% में) | 45 − 55 | 55 − 65 | 65 − 75 | 75 − 85 | 85 − 95 |
शहरों की संख्या | 3 | 10 | 11 | 8 | 3 |
उत्तर
वर्ग चिह्न ज्ञात करने के लिए निम्नलिखित संबंध का प्रयोग किया जाता है।
`x_i = ("उच्च वर्ग सीमा + निम्न वर्ग सीमा")/2`
इस डेटा के लिए वर्ग आकार (h) = 10
70 को कल्पित माध्य (a), di, ui, और fiui के रूप में लेने की गणना निम्नानुसार की जाती है।
साक्षरता दर (% में) |
शहरों की संख्या fi |
xi | di = xi − 70 | ui = di/10 | fiui |
45 − 55 | 3 | 50 | −20 | −2 | −6 |
55 − 65 | 10 | 60 | −10 | −1 | −10 |
65 − 75 | 11 | 70 | 0 | 0 | 0 |
75 − 85 | 8 | 80 | 10 | 1 | 8 |
85 − 95 | 3 | 90 | 20 | 2 | 6 |
Total | 35 | −2 |
तालिका से, हम प्राप्त करते हैं
`sumf_i = 35`
`sumf_iu_i = -2`
`"माध्य" barx = a+ ((sumf_iu_i)/(sumf_i))xxh`
= `70+(-2/35)xx(10)`
= `70-20/35`
=`70-4/7`
= 70 − 0.57
= 69.43
अतः औसत साक्षरता दर 69.43% है।
APPEARS IN
संबंधित प्रश्न
किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:
हृदय स्पंदन की प्रति मिनट संख्या | 65 - 68 | 68 - 71 | 71 - 74 | 74 - 77 | 77 - 80 | 80 - 83 | 83 - 86 |
महिलाओं की संख्या | 2 | 4 | 3 | 8 | 7 | 4 | 2 |
वर्गीकृत आँकड़ों का माध्य अभिकलित करते समय, हम यह कल्पना करते हैं कि बारंबारताएँ ______।
यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है।
वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए, सूत्र `barx = a + h((sumf_iu_i)/(sumf_i))` में, ui = ______।
वर्गीकृत आँकड़ों की ‘से कम प्रकार' और 'से अधिक प्रकार' की संचयी बारंबारता वक्रों के प्रतिच्छेद बिंदु के भुज से आंकड़ों का प्राप्त होना है:
वर्गीकृत आँकड़ों का माध्य परिकलित करने के लिए, हम सूत्र `barx = a + (sumf_i d_i)/(sumf_i)` का प्रयोग कर सकते है, जब सभी वर्गों की वर्गमाप बराबर हैं, a कल्पित माध्य है तथा a को वर्गों के मध्य-बिंदुओं में से कोई एक होना चाहिए। क्या अंतिम कथन सत्य है? अपने उत्तर का औचित्य दीजिए।
निम्नलिखित सारणी, सारिका द्वारा स्वयं अपनी पुस्तक को पूर्ण करने के लिए 30 दिन तक लिखे गये पृष्ठों को दर्शाती है:
प्रतिदिन लिखे पृष्ठों की संख्या |
16 – 18 |
19 – 21 |
22 – 24 |
25 – 27 |
28 – 30 |
दिनों की संख्या |
1 |
3 |
4 |
9 |
13 |
प्रतिदिन लिखे गए माध्य पृष्ठों की संख्या ज्ञात कीजिए।
किसी एयरक्राफ्ट में यात्रियों के लिए 120 सीटें हैं। 100 उड़ानों के दौरान प्रयोग की गयी सीटों की संख्याएं निम्नलिखित सारणी में दी हुई हैं:
सीटों की संख्या |
100 – 104 |
104 – 108 |
108 – 112 |
112 – 116 |
116 – 120 |
बारंबारता |
15 |
20 |
32 |
18
|
15 |
इन उड़ानों में प्रयोग की गयी सीटों की संख्या का माध्य निर्धारित कीजिए।
निम्नलिखित बंटन का माध्य निर्धारित कीजिए:
प्राप्तांक | विद्यार्थियों की संख्या |
10 से कम | 5 |
20 से कम | 9 |
30 से कम | 17 |
40 से कम | 29 |
50 से कम | 45 |
60 से कम | 60 |
70 से कम | 70 |
80 से कम | 78 |
90 से कम | 83 |
100 से कम | 85 |
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) |
पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन पैकेटों का माध्य भार ज्ञात कीजिए।