Advertisements
Advertisements
प्रश्न
किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:
हृदय स्पंदन की प्रति मिनट संख्या | 65 - 68 | 68 - 71 | 71 - 74 | 74 - 77 | 77 - 80 | 80 - 83 | 83 - 86 |
महिलाओं की संख्या | 2 | 4 | 3 | 8 | 7 | 4 | 2 |
उत्तर
प्रत्येक अंतराल (xi) का वर्ग चिह्न ज्ञात करने के लिए निम्नलिखित संबंध का प्रयोग किया जाता है:
`x_i = ("उच्च वर्ग सीमा + निम्न वर्ग सीमा")/2`
इस आँकड़े का वर्ग आकार, h, = 3
75.5 को कल्पित माध्य (a), di, ui, fiui के रूप में लेते हुए इस प्रकार परिकलित किया जाता है।
प्रति मिनट दिल की धड़कन की संख्या |
महिलाओं की संख्या fi |
xi | di = xi − 75.5 | `u_i = (x_i-75.5)/3` | fiui |
65 − 68 | 2 | 66.5 | − 9 | -3 | -6 |
68 − 71 | 4 | 69.5 | − 6 | -2 | -8 |
71 − 74 | 3 | 72.5 | − 3 | -1 | -3 |
74 − 77 | 8 | 75.5 | 0 | 0 | 0 |
77 − 80 | 7 | 78.5 | 3 | 1 | 7 |
80 − 83 | 4 | 81.5 | 6 | 2 | 8 |
83 − 86 | 2 | 84.5 | 9 | 3 | 6 |
कुल | 30 | 4 |
तालिका से, हम प्राप्त करते हैं।
`sumf_i = 30`
`sumf_iu_i = 4`
माध्य `barx=a+((sumf_iu_i)/(sumf_i))xxh`
`= 75.5 +(4/30) xx 3`
= 75.5 + 0.4 = 75.9
इसलिए, इन महिलाओं के लिए माध्य धड़कन प्रति मिनट 75.9 धड़कन प्रति मिनट है।
APPEARS IN
संबंधित प्रश्न
किसी फुटकर बाजार में, फल विक्रेता पेटियों में रखे आम बेच रहे थे। इन पेटियों में आमों की संख्याएँ भिन्न-भिन्न थी। पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था:
आम की संख्या | 50 − 52 | 53 − 55 | 56 − 58 | 59 − 61 | 62 − 64 |
बक्सों की संख्या | 15 | 110 | 135 | 115 | 25 |
एक पैकिंग बॉक्स में रखे आमों की औसत संख्या ज्ञात कीजिए। आपने माध्य ज्ञात करने का कौन सा तरीका चुना?
वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए, सूत्र `barx = a + (f_i d_i)/f_i` में di निम्नलिखित के a से विचलन है:
यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है।
वर्गीकृत आँकड़ों की ‘से कम प्रकार' और 'से अधिक प्रकार' की संचयी बारंबारता वक्रों के प्रतिच्छेद बिंदु के भुज से आंकड़ों का प्राप्त होना है:
50 कर्मचारियों के एक प्रतिदर्श की दैनिक आय निम्नलिखित रूप में सारणीबद्ध है:
आय (रु में) |
1 – 200 |
201 – 400 |
401 – 600 |
601 – 800 |
कर्मचारियों की संख्या |
14 | 15 | 14 | 7 |
कर्मचारियों की माध्य दैनिक आय ज्ञात कीजिए।
किसी एयरक्राफ्ट में यात्रियों के लिए 120 सीटें हैं। 100 उड़ानों के दौरान प्रयोग की गयी सीटों की संख्याएं निम्नलिखित सारणी में दी हुई हैं:
सीटों की संख्या |
100 – 104 |
104 – 108 |
108 – 112 |
112 – 116 |
116 – 120 |
बारंबारता |
15 |
20 |
32 |
18
|
15 |
इन उड़ानों में प्रयोग की गयी सीटों की संख्या का माध्य निर्धारित कीजिए।
50 पहलवानों के भार (kg में) नीचे सारणी में दिये हैं:
भार (kg में) |
100 – 110 |
110 – 120 |
120 – 130 |
130 – 140 |
140 – 150 |
पहलवानों की संख्या |
4 |
14 |
21 |
8 |
3 |
इन पहलवानों का माध्य भार ज्ञात कीजिए।
किसी कार निर्माता द्वारा एक ही मॉडल की 50 कारों की माइलेज़ (अर्थात एक लीटर ईंधन में कितने km चलती हैं) की जाँच की, जिसके परिणाम नीचे सारणीबद्ध हैं:
माइलेज (km/L) |
10 – 12 |
12 – 14 |
14 – 16 |
16 – 18 |
कारों की संख्या |
7 |
12 |
18 |
13 |
माध्य माइलेज ज्ञात कीजिए। निर्माता यह दावा करता है कि इस माइलेज 16 km/L है। क्या आप इस दावे से सहमत है?
निम्नलिखित बंटन का माध्य निर्धारित कीजिए:
प्राप्तांक | विद्यार्थियों की संख्या |
10 से कम | 5 |
20 से कम | 9 |
30 से कम | 17 |
40 से कम | 29 |
50 से कम | 45 |
60 से कम | 60 |
70 से कम | 70 |
80 से कम | 78 |
90 से कम | 83 |
100 से कम | 85 |
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) |
पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन पैकेटों का माध्य भार ज्ञात कीजिए।