हिंदी

किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:

हृदय स्पंदन की प्रति मिनट संख्या 65 - 68 68 - 71 71 - 74 74 - 77 77 - 80 80 - 83 83 - 86
महिलाओं की संख्या 2 4 3 8 7 4 2
योग

उत्तर

प्रत्येक अंतराल (xi) का वर्ग चिह्न ज्ञात करने के लिए निम्नलिखित संबंध का प्रयोग किया जाता है:

`x_i = ("उच्च वर्ग सीमा + निम्न वर्ग सीमा")/2`

इस आँकड़े का वर्ग आकार, h, = 3

75.5 को कल्पित माध्य (a), di, ui, fiui के रूप में लेते हुए इस प्रकार परिकलित किया जाता है।

प्रति मिनट दिल की धड़कन की संख्या

महिलाओं की संख्या fi

xi di = xi − 75.5 `u_i = (x_i-75.5)/3` fiui
65 − 68 2 66.5 − 9 -3 -6
68 − 71 4 69.5 − 6 -2 -8
71 − 74 3 72.5 − 3 -1 -3
74 − 77 8 75.5 0 0 0
77 − 80 7 78.5 3 1 7
80 − 83  4 81.5 6 2 8
83 − 86 2 84.5 9 3 6
कुल 30       4

तालिका से, हम प्राप्त करते हैं। 

`sumf_i = 30`

`sumf_iu_i = 4`

माध्य `barx=a+((sumf_iu_i)/(sumf_i))xxh`

`= 75.5 +(4/30) xx 3`

= 75.5 + 0.4 = 75.9

इसलिए, इन महिलाओं के लिए माध्य धड़कन प्रति मिनट 75.9 धड़कन प्रति मिनट है।

shaalaa.com
वर्गीकृत आँकड़ों का माध्य
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: सांख्यिकी - प्रश्नावली 14.1 [पृष्ठ २९७]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 14 सांख्यिकी
प्रश्नावली 14.1 | Q 4. | पृष्ठ २९७

संबंधित प्रश्न

विद्यार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अंतर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए। प्रति घर माध्य पौधों की संख्या ज्ञात कीजिए।

पौधों की संख्या 0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14
घरों की संख्या 1 2 1 5 6 2 3

माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों?


एक कारखाने के 50 श्रमिकों के दैनिक वेतन के निम्नलिखित वितरण पर विचार करें।

दैनिक मजदूरी (रुपये में)

500 - 520

520 - 540

540 - 560

560 - 580

580 - 600

श्रमिकों की संख्या 12

14

8

6

10

एक उपयुक्त विधि का उपयोग करके कारखाने के श्रमिकों की औसत दैनिक मजदूरी ज्ञात कीजिए।


यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है। 


वर्गीकृत आँकड़ों की ‘से कम प्रकार' और 'से अधिक प्रकार' की संचयी बारंबारता वक्रों के प्रतिच्छेद बिंदु के भुज से आंकड़ों का प्राप्त होना है: 


क्या यह कहना सत्य है कि दिये हुए वर्गीकृत आँकड़ों के माध्य, बहुलक और माध्यक सदैव भिन्न-भिन्न होंगे? अपने उत्तर का औचित्य दीजिए।


50 कर्मचारियों के एक प्रतिदर्श की दैनिक आय निम्नलिखित रूप में सारणीबद्ध है:

आय (रु में)

1 – 200

201 – 400

401 – 600

601 – 800

कर्मचारियों की संख्या

14 15 14 7

कर्मचारियों की माध्य दैनिक आय ज्ञात कीजिए। 


किसी कार निर्माता द्वारा एक ही मॉडल की 50 कारों की माइलेज़ (अर्थात एक लीटर ईंधन में कितने km चलती हैं) की जाँच की, जिसके परिणाम नीचे सारणीबद्ध हैं:  

माइलेज (km/L)

10 – 12

12 – 14

14 – 16

16 – 18

कारों की संख्या

7

12

18

13

माध्य माइलेज ज्ञात कीजिए। निर्माता यह दावा करता है कि इस माइलेज 16 km/L है। क्या आप इस दावे से सहमत है?


निम्नलिखित बंटन का माध्य निर्धारित कीजिए:

प्राप्तांक विद्यार्थियों की संख्या
10 से कम 5
20 से कम 9
30 से कम 17
40 से कम 29
50 से कम 45
60 से कम 60
70 से कम 70
80 से कम 78
90 से कम 83
100 से कम 85

70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में)

पैकेटों की संख्या

200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन पैकेटों का माध्य भार ज्ञात कीजिए।


निम्नलिखित बारंबारता बंटन का माध्य 50 है, परंतु 20 – 40 और 60 – 80 वर्गों की बारंबारताएँ क्रमशः f1 और f2 ज्ञात नहीं हैं। ये बारंबारताएँ ज्ञात कीजिए, यदि सभी बारंबारताओं का योग 120 है। 

वर्ग

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

बारंबारता

17

f1

32

f2

19


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×