हिंदी

यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा x¯ माध्य है, तो ∑(fixi-x¯) बराबर ______है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है। 

विकल्प

  • 0

  • –1

  • 1

  • 2

MCQ
रिक्त स्थान भरें

उत्तर

यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर 0 है।  

स्पष्टीकरण:

माध्य (x) = `"सभी प्रेक्षणों का योग"/"प्रेक्षणों की संख्या"`

x = `(f_1x_1 + f_2x_2 + ...... + f_nx_n)/(f_1 + f_2 + ...... + f_n)`

x = `(sumf_ix_i)/(sumf_i), sum f_i` = n

x = `(sumf_ix_i)/n`

nx = `sumf_ix_i`   ...(1)

`sum(f_ix_i - x) = (f_1x_1 - x) + (f_2x_2 - x) + .... + (f_nx_n - x)`

`sum(f_ix_i - x) = (f_1x_1 + f_2x_2 + .... + f_nx_n) - (x + x +  .... n  "times")`

`sum(f_ix_i - x) = sumf_ix_i - nx`

`sum(f_ix_i - x) = nx - nx`   ...(समीकरण 1 से)

`sum(f_ix_i - x)` = 0

shaalaa.com
वर्गीकृत आँकड़ों का माध्य
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: साँख्यिकी और प्रायिकता - प्रश्नावली 13.1 [पृष्ठ १५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 13 साँख्यिकी और प्रायिकता
प्रश्नावली 13.1 | Q 3. | पृष्ठ १५९

संबंधित प्रश्न

विद्यार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अंतर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए। प्रति घर माध्य पौधों की संख्या ज्ञात कीजिए।

पौधों की संख्या 0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14
घरों की संख्या 1 2 1 5 6 2 3

माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों?


एक कारखाने के 50 श्रमिकों के दैनिक वेतन के निम्नलिखित वितरण पर विचार करें।

दैनिक मजदूरी (रुपये में)

500 - 520

520 - 540

540 - 560

560 - 580

580 - 600

श्रमिकों की संख्या 12

14

8

6

10

एक उपयुक्त विधि का उपयोग करके कारखाने के श्रमिकों की औसत दैनिक मजदूरी ज्ञात कीजिए।


किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:

हृदय स्पंदन की प्रति मिनट संख्या 65 - 68 68 - 71 71 - 74 74 - 77 77 - 80 80 - 83 83 - 86
महिलाओं की संख्या 2 4 3 8 7 4 2

निम्न तालिका 35 शहरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए:

साक्षरता दर (% में) 45 − 55 55 − 65 65 − 75 75 − 85 85 − 95
शहरों की संख्या 3 10 11 8 3

वर्गीकृत आँकड़ों का माध्य अभिकलित करते समय, हम यह कल्पना करते हैं कि बारंबारताएँ ______।


वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए, सूत्र `barx = a + h((sumf_iu_i)/(sumf_i))` में, ui = ______।


वर्गीकृत आँकड़ों का माध्य परिकलित करने के लिए, हम सूत्र `barx = a + (sumf_i d_i)/(sumf_i)` का प्रयोग कर सकते है, जब सभी वर्गों की वर्गमाप बराबर हैं, a कल्पित माध्य है तथा a को वर्गों के मध्य-बिंदुओं में से कोई एक होना चाहिए। क्या अंतिम कथन सत्य है? अपने उत्तर का औचित्य दीजिए।


50 पहलवानों के भार (kg में) नीचे सारणी में दिये हैं:

भार (kg में)

100 – 110

110 – 120

120 – 130

130 – 140

140 – 150

पहलवानों की संख्या

4

14

21

8

3

इन पहलवानों का माध्य भार ज्ञात कीजिए।


निम्नलिखित आँकड़ों से एक शहर के 100 निवासियों की माध्य आयु ज्ञात कीजिए:

आयु बराबर और उससे अधिक (वर्षों में)

0

10

20

30

40

50

60

70

व्यक्तियों की संख्या

100

90

75

50

25

15

5

0


निम्नलिखित बारंबारता बंटन का माध्य 50 है, परंतु 20 – 40 और 60 – 80 वर्गों की बारंबारताएँ क्रमशः f1 और f2 ज्ञात नहीं हैं। ये बारंबारताएँ ज्ञात कीजिए, यदि सभी बारंबारताओं का योग 120 है। 

वर्ग

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

बारंबारता

17

f1

32

f2

19


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×