हिंदी

वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए, सूत्र x¯=a+h(∑fiui∑fi) में, ui = ______। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए, सूत्र `barx = a + h((sumf_iu_i)/(sumf_i))` में, ui = ______।

विकल्प

  • `(x_i + a)/h`

  • `h(x_i - a)`

  • `(x_i - a)/h`

  • `(a - x_i)/h`

MCQ
रिक्त स्थान भरें

उत्तर

वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए, सूत्र `barx = a + h((sumf_iu_i)/(sumf_i))` में, ui = `underlinebb((x_i - a)/h)`।

स्पष्टीकरण:

प्रश्न के अनुसार,

`barx = a + h((sumf_iu_i)/(sumf_i))`

उपरोक्त सूत्र एक चरण विचलन सूत्र है।

उपरोक्त सूत्र में,

xi डेटा मान है,

a को माध्य मान लिया गया है,

h वर्ग का आकार है,

जब वर्ग का आकार समान होता है तो हम u1, u2, u3 ….., के कोडित माध्य की गणना करके माध्य की गणना को सरल बनाते हैं।

जहाँ ui = `(x_i - a)/h`

shaalaa.com
वर्गीकृत आँकड़ों का माध्य
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: साँख्यिकी और प्रायिकता - प्रश्नावली 13.1 [पृष्ठ १६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 13 साँख्यिकी और प्रायिकता
प्रश्नावली 13.1 | Q 4. | पृष्ठ १६०

संबंधित प्रश्न

एक कारखाने के 50 श्रमिकों के दैनिक वेतन के निम्नलिखित वितरण पर विचार करें।

दैनिक मजदूरी (रुपये में)

500 - 520

520 - 540

540 - 560

560 - 580

580 - 600

श्रमिकों की संख्या 12

14

8

6

10

एक उपयुक्त विधि का उपयोग करके कारखाने के श्रमिकों की औसत दैनिक मजदूरी ज्ञात कीजिए।


किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:

हृदय स्पंदन की प्रति मिनट संख्या 65 - 68 68 - 71 71 - 74 74 - 77 77 - 80 80 - 83 83 - 86
महिलाओं की संख्या 2 4 3 8 7 4 2

निम्न तालिका 35 शहरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए:

साक्षरता दर (% में) 45 − 55 55 − 65 65 − 75 75 − 85 85 − 95
शहरों की संख्या 3 10 11 8 3

वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए, सूत्र `barx = a + (f_i d_i)/f_i` में di निम्नलिखित के a से विचलन है:


वर्गीकृत आँकड़ों की ‘से कम प्रकार' और 'से अधिक प्रकार' की संचयी बारंबारता वक्रों के प्रतिच्छेद बिंदु के भुज से आंकड़ों का प्राप्त होना है: 


निम्नलिखित बंटन का माध्य ज्ञात कीजिए :

वर्ग

1 – 3

3 – 5

5 – 7

7 – 10

बारंबारता

9

22

27

17


एक गणित टेस्ट में 20 विद्यार्थियों के  निम्नलिखित प्राप्तांकों का माध्य ज्ञात कीजिए :

प्राप्तांक

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

विद्यर्थियों की संख्या

2

4

7

6

1


निम्नलिखित बंटन का माध्य निर्धारित कीजिए:

प्राप्तांक विद्यार्थियों की संख्या
10 से कम 5
20 से कम 9
30 से कम 17
40 से कम 29
50 से कम 45
60 से कम 60
70 से कम 70
80 से कम 78
90 से कम 83
100 से कम 85

70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में)

पैकेटों की संख्या

200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन पैकेटों का माध्य भार ज्ञात कीजिए।


निम्नलिखित बारंबारता बंटन का माध्य 50 है, परंतु 20 – 40 और 60 – 80 वर्गों की बारंबारताएँ क्रमशः f1 और f2 ज्ञात नहीं हैं। ये बारंबारताएँ ज्ञात कीजिए, यदि सभी बारंबारताओं का योग 120 है। 

वर्ग

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

बारंबारता

17

f1

32

f2

19


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×