हिंदी

निम्न तालिका 35 शहरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए: साक्षरता दर (% में) 45 − 55 55 − 65 65 − 75 75 − 85 85 − 95 शहरों की संख्या 3 10 11 8 3 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्न तालिका 35 शहरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए:

साक्षरता दर (% में) 45 − 55 55 − 65 65 − 75 75 − 85 85 − 95
शहरों की संख्या 3 10 11 8 3
योग

उत्तर

वर्ग चिह्न ज्ञात करने के लिए निम्नलिखित संबंध का प्रयोग किया जाता है।

`x_i = ("उच्च वर्ग सीमा + निम्न वर्ग सीमा")/2`

इस डेटा के लिए वर्ग आकार (h) = 10

70 को कल्पित माध्य (a), di, ui, और fiui के रूप में लेने की गणना निम्नानुसार की जाती है।

साक्षरता दर (% में)

शहरों की संख्या fi

xi di = xi − 70 ui = di/10 fiui
45 − 55 3 50 −20 −2 −6
55 − 65 10 60 −10 −1 −10
65 − 75 11 70 0 0 0
75 − 85 8 80 10 1 8
85 − 95 3 90 20 2 6
Total 35       −2

तालिका से, हम प्राप्त करते हैं

`sumf_i = 35`

`sumf_iu_i = -2`

`"माध्य"  barx = a+ ((sumf_iu_i)/(sumf_i))xxh`

= `70+(-2/35)xx(10)`

= `70-20/35`

=`70-4/7`

= 70 − 0.57

= 69.43

अतः औसत साक्षरता दर 69.43% है।

shaalaa.com
वर्गीकृत आँकड़ों का माध्य
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: सांख्यिकी - प्रश्नावली 14.1 [पृष्ठ २९८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 14 सांख्यिकी
प्रश्नावली 14.1 | Q 9. | पृष्ठ २९८

संबंधित प्रश्न

एक कारखाने के 50 श्रमिकों के दैनिक वेतन के निम्नलिखित वितरण पर विचार करें।

दैनिक मजदूरी (रुपये में)

500 - 520

520 - 540

540 - 560

560 - 580

580 - 600

श्रमिकों की संख्या 12

14

8

6

10

एक उपयुक्त विधि का उपयोग करके कारखाने के श्रमिकों की औसत दैनिक मजदूरी ज्ञात कीजिए।


किसी फुटकर बाजार में, फल विक्रेता पेटियों में रखे आम बेच रहे थे। इन पेटियों में आमों की संख्याएँ भिन्न-भिन्न थी। पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था:

आम की संख्या 50 − 52 53 − 55 56 − 58 59 − 61 62 − 64
बक्सों की संख्या 15 110 135 115 25

एक पैकिंग बॉक्स में रखे आमों की औसत संख्या ज्ञात कीजिए। आपने माध्य ज्ञात करने का कौन सा तरीका चुना?


वर्गीकृत आँकड़ों का माध्य अभिकलित करते समय, हम यह कल्पना करते हैं कि बारंबारताएँ ______।


वर्गीकृत आँकड़ों का माध्य परिकलित करने के लिए, हम सूत्र `barx = a + (sumf_i d_i)/(sumf_i)` का प्रयोग कर सकते है, जब सभी वर्गों की वर्गमाप बराबर हैं, a कल्पित माध्य है तथा a को वर्गों के मध्य-बिंदुओं में से कोई एक होना चाहिए। क्या अंतिम कथन सत्य है? अपने उत्तर का औचित्य दीजिए।


निम्नलिखित बंटन का माध्य ज्ञात कीजिए :

वर्ग

1 – 3

3 – 5

5 – 7

7 – 10

बारंबारता

9

22

27

17


निम्नलिखित आँकड़ों का माध्य परिकलित कीजिए :

वर्ग

4 – 7

8 – 11

12 – 15

16 – 19

बारंबारता

5

4

9 10

50 पहलवानों के भार (kg में) नीचे सारणी में दिये हैं:

भार (kg में)

100 – 110

110 – 120

120 – 130

130 – 140

140 – 150

पहलवानों की संख्या

4

14

21

8

3

इन पहलवानों का माध्य भार ज्ञात कीजिए।


निम्नलिखित आँकड़ों से एक शहर के 100 निवासियों की माध्य आयु ज्ञात कीजिए:

आयु बराबर और उससे अधिक (वर्षों में)

0

10

20

30

40

50

60

70

व्यक्तियों की संख्या

100

90

75

50

25

15

5

0


70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में)

पैकेटों की संख्या

200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन पैकेटों का माध्य भार ज्ञात कीजिए।


निम्नलिखित बारंबारता बंटन का माध्य 50 है, परंतु 20 – 40 और 60 – 80 वर्गों की बारंबारताएँ क्रमशः f1 और f2 ज्ञात नहीं हैं। ये बारंबारताएँ ज्ञात कीजिए, यदि सभी बारंबारताओं का योग 120 है। 

वर्ग

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

बारंबारता

17

f1

32

f2

19


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×