English

किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन - Mathematics (गणित)

Advertisements
Advertisements

Question

किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:

हृदय स्पंदन की प्रति मिनट संख्या 65 - 68 68 - 71 71 - 74 74 - 77 77 - 80 80 - 83 83 - 86
महिलाओं की संख्या 2 4 3 8 7 4 2
Sum

Solution

प्रत्येक अंतराल (xi) का वर्ग चिह्न ज्ञात करने के लिए निम्नलिखित संबंध का प्रयोग किया जाता है:

`x_i = ("उच्च वर्ग सीमा + निम्न वर्ग सीमा")/2`

इस आँकड़े का वर्ग आकार, h, = 3

75.5 को कल्पित माध्य (a), di, ui, fiui के रूप में लेते हुए इस प्रकार परिकलित किया जाता है।

प्रति मिनट दिल की धड़कन की संख्या

महिलाओं की संख्या fi

xi di = xi − 75.5 `u_i = (x_i-75.5)/3` fiui
65 − 68 2 66.5 − 9 -3 -6
68 − 71 4 69.5 − 6 -2 -8
71 − 74 3 72.5 − 3 -1 -3
74 − 77 8 75.5 0 0 0
77 − 80 7 78.5 3 1 7
80 − 83  4 81.5 6 2 8
83 − 86 2 84.5 9 3 6
कुल 30       4

तालिका से, हम प्राप्त करते हैं। 

`sumf_i = 30`

`sumf_iu_i = 4`

माध्य `barx=a+((sumf_iu_i)/(sumf_i))xxh`

`= 75.5 +(4/30) xx 3`

= 75.5 + 0.4 = 75.9

इसलिए, इन महिलाओं के लिए माध्य धड़कन प्रति मिनट 75.9 धड़कन प्रति मिनट है।

shaalaa.com
वर्गीकृत आँकड़ों का माध्य
  Is there an error in this question or solution?
Chapter 14: सांख्यिकी - प्रश्नावली 14.1 [Page 297]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 14 सांख्यिकी
प्रश्नावली 14.1 | Q 4. | Page 297

RELATED QUESTIONS

एक कारखाने के 50 श्रमिकों के दैनिक वेतन के निम्नलिखित वितरण पर विचार करें।

दैनिक मजदूरी (रुपये में)

500 - 520

520 - 540

540 - 560

560 - 580

580 - 600

श्रमिकों की संख्या 12

14

8

6

10

एक उपयुक्त विधि का उपयोग करके कारखाने के श्रमिकों की औसत दैनिक मजदूरी ज्ञात कीजिए।


किसी फुटकर बाजार में, फल विक्रेता पेटियों में रखे आम बेच रहे थे। इन पेटियों में आमों की संख्याएँ भिन्न-भिन्न थी। पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था:

आम की संख्या 50 − 52 53 − 55 56 − 58 59 − 61 62 − 64
बक्सों की संख्या 15 110 135 115 25

एक पैकिंग बॉक्स में रखे आमों की औसत संख्या ज्ञात कीजिए। आपने माध्य ज्ञात करने का कौन सा तरीका चुना?


निम्न तालिका 35 शहरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए:

साक्षरता दर (% में) 45 − 55 55 − 65 65 − 75 75 − 85 85 − 95
शहरों की संख्या 3 10 11 8 3

वर्गीकृत आँकड़ों का माध्य अभिकलित करते समय, हम यह कल्पना करते हैं कि बारंबारताएँ ______।


यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है। 


वर्गीकृत आँकड़ों का माध्य परिकलित करने के लिए, हम सूत्र `barx = a + (sumf_i d_i)/(sumf_i)` का प्रयोग कर सकते है, जब सभी वर्गों की वर्गमाप बराबर हैं, a कल्पित माध्य है तथा a को वर्गों के मध्य-बिंदुओं में से कोई एक होना चाहिए। क्या अंतिम कथन सत्य है? अपने उत्तर का औचित्य दीजिए।


क्या यह कहना सत्य है कि दिये हुए वर्गीकृत आँकड़ों के माध्य, बहुलक और माध्यक सदैव भिन्न-भिन्न होंगे? अपने उत्तर का औचित्य दीजिए।


निम्नलिखित बंटन का माध्य ज्ञात कीजिए :

वर्ग

1 – 3

3 – 5

5 – 7

7 – 10

बारंबारता

9

22

27

17


निम्नलिखित सारणी, सारिका द्वारा स्वयं अपनी पुस्तक को पूर्ण करने के लिए 30 दिन तक लिखे गये पृष्ठों को दर्शाती है: 

प्रतिदिन लिखे पृष्ठों की संख्या

16 – 18

19 – 21

22 – 24

25 – 27

28 – 30

दिनों की संख्या

1

3

4

9

13

प्रतिदिन लिखे गए माध्य पृष्ठों की संख्या ज्ञात कीजिए।


निम्नलिखित आँकड़ों से एक शहर के 100 निवासियों की माध्य आयु ज्ञात कीजिए:

आयु बराबर और उससे अधिक (वर्षों में)

0

10

20

30

40

50

60

70

व्यक्तियों की संख्या

100

90

75

50

25

15

5

0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×