Advertisements
Advertisements
Questions
निम्नलिखित वितरण एक इलाके के बच्चों के दैनिक जेब भत्ते को दर्शाता है। औसत जेब भत्ता 18 रुपये है। लापता आवृत्ति का पता लगाएं f ज्ञात कीजिए:
दैनिक जेब भत्ता (रुपये में) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
श्रमिकों की संख्या | 7 | 6 | 9 | 13 | f | 5 | 4 |
निम्नलिखित बंटन एक मोहल्ले के बच्चों के दैनिक जेबखर्च दर्शाता है।माध्य जेबखर्च ₹ 18 है। लुप्त बारंबारता f ज्ञात कीजिए:
दैनिक जेब भत्ता (रुपये में) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
बच्चों की संख्या | 7 | 6 | 9 | 13 | f | 5 | 4 |
Solution
प्रत्येक अंतराल के लिए वर्ग चिह्न (xi) ज्ञात करने के लिए, निम्नलिखित संबंध का उपयोग किया जाता है।
यह देखते हुए, औसत पॉकेट भत्ता, `barx`= रु 18
यह देखते हुए, औसत पॉकेट भत्ता, `barx`= रु 18
18 को सुनिश्चित माध्य (A) के रूप में लेते हुए, di और fidi की गणना निम्नानुसार की जाती है।
दैनिक जेब भत्ता (रुपये में) |
बच्चों की संख्या `(f_i)` |
कक्षा चिह्न `(x_i)` | `f_i x_i` |
11-13 | 7 | 12 | 84 |
13-15 | 6 | 14 | 84 |
15-17 | 9 | 16 | 144 |
17-19 | 13 | 18 | 234 |
19-21 | f | 20 | 20f |
21-23 | 5 | 22 | 110 |
23-25 | 4 | 24 | 96 |
Total | `sum f_i = 44+f` | `sum f_ix_i =752 + 20f` |
तालिका से, हम प्राप्त करते हैं।
`barx = (sum_(i) f_ix_i )/(sum_(i) f_i)`
⇒ 18 =` (750+20f)/(44+f)`
⇒ 18 (44 + f) = 752 + 20f
⇒ 792 + 18 f = 752 -20f
⇒ 20f - 18 f = 792 - 752
⇒ 2f = 40
⇒ f = 20
अत: लुप्त आवृत्ति, f, 20 है।
APPEARS IN
RELATED QUESTIONS
यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए:
कक्षा अन्तराल | आवृत्ति |
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
वर्ग |
0 – 5 |
6 – 11 |
12 – 17 |
18 – 23 |
24 – 29 |
बारंबारता |
13 |
10 |
15 |
8 |
11 |
बंटन में, माध्यक वर्ग की उपरि सीमा है-
अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।
क्या दिये हुए वर्गीकृत आँकड़ों के लिए माध्यक वर्ग और बहुलक वर्ग सदैव भिन्न-भिन्न होंगे? अपने उत्तर का औचित्य दीजिए।
600 परिवारों की साप्ताहिक आय नीचे सारणीबद्ध है:
साप्ताहिक आय (रू में) |
परिवारों की संख्या |
0 – 1000 | 250 |
1000 – 2000 | 190 |
2000 – 3000 | 100 |
3000 – 4000 | 40 |
4000 – 5000 | 15 |
5000 – 6000 | 5 |
कुल | 600 |
माध्यम आय अभिकलित कीजिए।
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) | पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' का तोरण खींचिए तथा इसका प्रयोग माध्यक भार ज्ञात करने में कीजए।
निम्नलिखित आँकड़ों का माध्यक 50 है। यदि सभी बारंबारताओं का योग 90 है, तो p और q के मान ज्ञात कीजिए।
प्राप्तांक | बारंबारता |
20 – 30 | p |
30 – 40 | 15 |
40 – 50 | 25 |
50 – 60 | 20 |
60 – 70 | q |
70 – 80 | 8 |
80 – 90 | 10 |
96 बच्चों की लंबाइयों (ऊँचाइयों) (cm में) का बंटन नीचे दिया गया है:
लंबाई (cm में) |
बच्चों की संख्या |
124 – 128 | 5 |
128 – 132 | 8 |
132 – 136 | 17 |
136 – 140 | 24 |
140 – 144 | 16 |
144 – 148 | 12 |
148 – 152 | 6 |
152 – 156 | 4 |
156 – 160 | 3 |
160 – 164 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' की संचयी बारंबारता वक्र खींचिए और इसका बच्चों की माध्यक लंबाई ज्ञात करने में प्रयोग कीजिए।
किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:
समय काल (सेकंडों में) |
कॉलों की संख्या |
95 – 125 | 14 |
125 – 155 | 22 |
155 – 185 | 28 |
185 – 215 | 21 |
215 – 245 | 15 |
इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
माध्यक के सूत्र का प्रयोग करते हुए, माध्यक दूरी ज्ञात कीजिए।