English

किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है: समय काल (सेकंडों में) कॉलों की संख्या 95 – 125 14 125 – 155 22 155 – 185 28 185 – 215 21 215 – 245 15 - Mathematics (गणित)

Advertisements
Advertisements

Question

किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:

समय काल (सेकंडों में)

कॉलों की संख्या

95 – 125 14
125 – 155 22
155 – 185 28
185 – 215 21
215 – 245 15

इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।

Graph
Sum

Solution

सबसे पहले, हम निम्नानुसार वर्ग अंकों की गणना करते हैं।

समय काल
(सेकंड में)

कॉलो की संख्या
`(bb(f_i))`

वर्ग चिह्न
`(bb(x_i))`

​`bb(u_i = (x_i - a)/h)`​
`​bb(f_iu_i)​`

95 – 125

14

110

– 2

– 28

125 – 155

22

140

– 1

 – 22

155 – 185

28

a = 170

0

0

185 – 215

21

200

1

21

215 – 245

15

230

2

30

 
`sumf_i = 100`​
 
 
​`sumf_iu_i = 1`​

यहाँ, (अनुमानित माध्य) a = 170,

और (वर्ग चौड़ाई) h = 30

चरण विचलन विधि द्धारा,

​​औसत `(barx)​ = a + (sumf_iu_i)/(sumf_i) xx h`

= `170 + 1/100 xx 30`

= 170 + 0.3

= 170.3​​

अतः, औसत अवधि 170.3 सेकंड हैं।

संचयी आवृत्ति वक्र से माध्यिका की गणना के लिए

हम प्रकार से कम या प्रकार से अधिक तोरण तैयार करते हैं।

हमने देखा कि, 95 सेकंड से कम समय में कॉलों की संख्या 0 है। इसी प्रकार, 125 सेकंड से कम में 95 सेकंड से कम में कॉल की संख्या के साथ-साथ 95 – 125.एस से कॉल की संख्या भी शामिल है। तो, 125 सेकंड से कम कॉल की कुल संख्या 0 + 14 = 14 है। इसी तरह आगे बढ़ते रहने पर हम 155, 185, 215 और 245 सेकेंड से भी कम समय में शेष रह जाएंगे।

अब, हम तोरण (संचयी आवृत्ति वक्र) से कम के लिए एक तालिका बनाते हैं।

से कम प्रकार

समय काल (सेकंड में)

कॉलो की संख्या

95 से कम

0

125 से कम

0 + 14 = 14

155 से कम

14 + 22 = 36

185 से कम

36 + 28 = 64

215 से कम

64 + 21 = 85

245 से कम

85 + 15 = 100

प्रकार के तोरण से कम अंक निकालने के लिए हम उन पर अंक आलेखित करते हैं (95, 0), (125, 14) (155, 36), (185, 64), (215, 85), (245, 100) कागज पर और मुक्त हाथ से उन्हें जोड़ दें।

∴ कॉल की कुल संख्या (n) = 100

∴ `n/2 = 100/2 = 50`

अब, बिंदु 50 को Y-अक्ष पर लेते हुए X-अक्ष के समानांतर एक रेखा खींचें जो बिंदु P पर मिलती है और P से X-अक्ष पर एक लंबवत रेखा खींचें, X-अक्ष का प्रतिच्छेदन बिंदु माध्यिका है।

अतः, अभीष्ट माध्यिका 170 है।

shaalaa.com
वर्गीकृत आँकड़ों का माध्यक
  Is there an error in this question or solution?
Chapter 13: साँख्यिकी और प्रायिकता - प्रश्नावली 13.4 [Page 185]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 13 साँख्यिकी और प्रायिकता
प्रश्नावली 13.4 | Q 13. | Page 185

RELATED QUESTIONS

हवा में SO2 की सांद्रता का पता लगाने के लिए (प्रति मिलियन भागों में, यानी, ppm), एक निश्चित शहर में 30 इलाकों के लिए डेटा एकत्र किया गया था और नीचे प्रस्तुत किया गया है:

SO2 की सांद्रता (ppm में) आवृत्ति
0.00 − 0.04 4
0.04 − 0.08 9
0.08 − 0.12 9
0.12 − 0.16 2
0.16 − 0.20 4
0.20 − 0.24 2

हवा में SO2 की औसत सांद्रता ज्ञात कीजिए।


निम्‍नलिखित सारणी 400 नियाॅन लैंपों के जीवन कालों को प्रदर्शित करती है:

जीवन काल (घंटों में) लैंप की संख्या
1500 – 2000 14
2000 – 2500 56
2500 – 3000 60
3000 – 3500 86
3500 – 4000 74
4000 – 4500 62
4500 – 5000 48

एक लैंप का माध्यक जीवन काल ज्ञात कीजिए।


नीचे दिया हुआ बंटन एक कक्षा के 30 विद्यार्थियों के भार दर्शा रहा है। विद्यार्थियों का माध्यक भार ज्ञात कीजिए।

वजन (किलो में) 40−45 45−50 50−55 55−60 60−65 65−70 70−75
छात्रों की संख्या 2 3 8 6 6 3 2

अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।


600 परिवारों की साप्ताहिक आय नीचे सारणीबद्ध है:

साप्ताहिक आय
(रू में) 
परिवारों की संख्या
0 – 1000 250
1000 – 2000 190
2000 – 3000 100
3000 – 4000 40
4000 – 5000 15
5000 – 6000 5
कुल 600

माध्यम आय अभिकलित कीजिए।


70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में) पैकेटों की संख्या
200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन आँकड़ों के लिए, 'से कम प्रकार' और 'से अधिक प्रकार' के तोरण खींचिए तथा इनका माध्यक भार ज्ञात करने में प्रयोग कीजिए।


96 बच्चों की लंबाइयों (ऊँचाइयों) (cm में) का बंटन नीचे दिया गया है:

लंबाई (cm में)

बच्चों की संख्या

124 – 128 5
128 – 132 8
132 – 136 17
136 – 140 24
140 – 144 16
144 – 148 12
148 – 152 6
152 – 156 4
156 – 160 3
160 – 164 1

इन आँकड़ों के लिए, 'से कम प्रकार' की संचयी बारंबारता वक्र खींचिए और इसका बच्चों की माध्यक लंबाई ज्ञात करने में प्रयोग कीजिए।


एक सर्वे के द्वारा 200 परिवारों के कृषि योग्य भूमि–स्वामित्व साइज नीचे सारणी मे दिये हैं: 

कृषि योग्य भूमि स्वामित्व का साइज (ha में)

परिवारों की संख्या

0 – 5

10

5 – 10

15

10 – 15

30

15 – 20

80

20 – 25

40

25 – 30

20

30 – 35

5

इन भूमि–स्वामित्वों के माध्यक और बहुलक साइज ज्ञात कीजिए। 


किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है:

वर्षा (cm में)

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

दिनों की संख्या

22

10

8

15

5

6

'से कम प्रकार' और 'से अधिक प्रकार के' तोरणों का प्रयोग करके माध्यक वर्षा परिकलित कीजिए।


एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:

दूरी (m में)

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

विद्यार्थियों की संख्या

6

11

17

12

4

क्या ऊपर (ii) और (iii) में प्राप्त किये गये माध्यक बराबर हैं?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×