English

किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है: वर्षा (cm में) 0 – 10 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 दिनों की संख्या 22 10 8 15 5 6 'से कम प्रकार' - Mathematics (गणित)

Advertisements
Advertisements

Question

किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है:

वर्षा (cm में)

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

दिनों की संख्या

22

10

8

15

5

6

'से कम प्रकार' और 'से अधिक प्रकार के' तोरणों का प्रयोग करके माध्यक वर्षा परिकलित कीजिए।

Graph
Sum

Solution

हम देखते हैं कि, 0 से कम वाले शहर का वार्षिक वर्षा रिकॉर्ड 0 होता है। इसी तरह, 10 से कम में 0 से शहर के वार्षिक वर्षा रिकॉर्ड के साथ-साथ 0 – 10 तक के शहर का वार्षिक वर्षा रिकॉर्ड भी शामिल होता है।

तो, 10 सेमी से कम वाले शहर का कुल वार्षिक वर्षा रिकॉर्ड 0 + 22 = 22 दिन है। इसी तरह आगे बढ़ते रहने पर हमें 20, 30, 40, 50 और 60 से कम शेष मिलेंगे।

इसके अलावा, हम देखते हैं कि किसी शहर का 66 दिनों का वार्षिक वर्षा रिकॉर्ड 0 सेमी से अधिक या उसके बराबर है। चूँकि, 22 दिन 0 – 10 के अंतराल में आते हैं। तो, 66 – 22 = 44 दिनों का वार्षिक वर्षा रिकॉर्ड 10 सेमी से अधिक या उसके बराबर है। इसी तरह आगे बढ़ते रहने पर हमें 20, 30, 40, 50 और 60 से अधिक या उसके बराबर शेष मिलेगा।

अब, हम इससे कम और इससे अधिक प्रकार के लिए एक तालिका बनाते हैं।

(i) से कम प्रकार

(ii) से अधिक प्रकार

वर्षा (cm में)

दिनों की संख्या

वर्षा (cm में)

दिनों की संख्या

0 से कम

0

0 से अधिक या उसके बराबर

66

10 से कम

0 + 22 = 22

10 से अधिक या उसके बराबर

66 – 22 = 44

20 से कम

22 + 10 = 32

20 से अधिक या उसके बराबर

44 – 10 = 34

30 से कम

32 + 8 = 40

30 से अधिक या उसके बराबर

34 – 8 = 26

40 से कम

40 + 15 = 55

40 से अधिक या उसके बराबर

26 – 15 = 11

50 से कम

55 + 5 = 60

50 से अधिक या उसके बराबर

11 – 5 = 6

60 से कम

60 + 6 = 66

60 से अधिक या उसके बराबर

6 – 6 = 0

प्रकार से कम तोरण निकालने के लिए हम बिंदुओं को आलेखित करते हैं (0, 0), (0, 22), (20, 32), (30, 40), (40, 55), (50, 60), (60, 66) कागज पर और मुक्त हाथ से उन्हें जोड़ दें।

अधिक प्रकार का तोरण निकालने के लिए हम बिंदुओं को आलेखित करते हैं (0, 66), (0, 44), (20, 34), (30, 26), (40, 77), (50, 6) और (60, 0) ग्राफ़ पेपर पर और उन्हें मुक्त हाथ से जोड़ दें।


∵ दिनों की कुल संख्या (n) = 66

अब, `n/2 = 33`

सबसे पहले, हम दोनों तोरणों के प्रतिच्छेदन बिंदु पर X-अक्ष के समानांतर एक रेखा खींचते हैं, जो आगे Y-अक्ष पर (0, 33) पर प्रतिच्छेद करती है। अब, हम दोनों तोरणों के प्रतिच्छेदन बिंदु पर एक्स-अक्ष पर लंबवत एक रेखा खींचते हैं, जो आगे चलकर एक्स-अक्ष पर (21.25, 0) पर प्रतिच्छेद करती है, जो तोरणों का उपयोग करके आवश्यक माध्यिका है।

अत:, औसत वर्षा = 21.25 सेमी।

shaalaa.com
वर्गीकृत आँकड़ों का माध्यक
  Is there an error in this question or solution?
Chapter 13: साँख्यिकी और प्रायिकता - प्रश्नावली 13.4 [Page 185]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 13 साँख्यिकी और प्रायिकता
प्रश्नावली 13.4 | Q 12. | Page 185

RELATED QUESTIONS

निम्नलिखित वितरण एक इलाके के बच्चों के दैनिक जेब भत्ते को दर्शाता है। औसत जेब भत्ता 18 रुपये है। लापता आवृत्ति का पता लगाएं f ज्ञात कीजिए:

दैनिक जेब भत्ता (रुपये में)

11-13 13-15 15-17 17-19 19-21 21-23 23-25
श्रमिकों की संख्या 7 6 9 13 f 5 4

किसी कक्षा अध्यापिका ने पुरे सत्र के लिए अपनी कक्षा के 40 विधार्थियो की अनुपस्थिति निम्नलिखित रूप में रिकॉर्ड की। एक विधार्थी जितने दिन अनुपस्थित रहा उनका माध्य ज्ञात कीजिए:

Number of days 0 - 6 6 - 10 10 -14 14 -20 20 -28 28 -38 38 -40
छात्रों की संख्या 11 10 7 4 4 3 1

एक पौधे की 40 पत्तियों की लंबाइयाँ निकटतम मिलीमिटरों में मापी जाती है तथा प्राप्त आँकड़ों को निम्‍नलिखित सारणी के रुप में निरुपित किया जाता है:

लंबाई (mm में) पत्तियों की संख्या
118 − 126 3
127 − 135 5
136 − 144 9
145 − 153 12
154 − 162 5
163 − 171 4
172 − 180 2

पत्तियों की माध्यक लंबाई ज्ञात कीजिए।

संकेत: माध्यक ज्ञात करने के लिए, आँकड़ो को सतत वर्ग अंतरालों में बदलना पड़ेगा, क्योकिं सूत्र में वर्ग 117.5 - 126.5 , 126.5 - 135.5 ,…,171.5 - 180.5 अंतरालों को सतत माना गया है। तब ये वर्ग में बदल जाते है।


अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।


किसी क्रिकेट कोचिंग केंद्र पर 33 खिलाडियों की गेंदबाजी करने की अधिकतम चालें (km प्रति घंटा में) इस प्रकार है: 

चाल (km/h)

85 – 100

100 – 115

115 – 130

130 – 145

खिलाड़ियों की संख्या

11 9 8 5

गेंदबाजी की माध्यक चाल परिकलित कीजिए।


निम्नलिखित बंटन के लिए, माध्य प्राप्तांक ज्ञात कीजिए:

प्राप्तांक विद्यार्थियों की संख्या
0 और उससे अधिक 80 
10 और उससे अधिक 77
20 और उससे अधिक 72
30 और उससे अधिक 65
40 और उससे अधिक 55
50 और उससे अधिक 43
60 और उससे अधिक 28
70 और उससे अधिक 16
80 और उससे अधिक 10
90 और उससे अधिक 8
100 और उससे अधिक 0

70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में) पैकेटों की संख्या
200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन आँकड़ों के लिए, 'से कम प्रकार' का तोरण खींचिए तथा इसका प्रयोग माध्यक भार ज्ञात करने में कीजए।


एक सर्वे के द्वारा 200 परिवारों के कृषि योग्य भूमि–स्वामित्व साइज नीचे सारणी मे दिये हैं: 

कृषि योग्य भूमि स्वामित्व का साइज (ha में)

परिवारों की संख्या

0 – 5

10

5 – 10

15

10 – 15

30

15 – 20

80

20 – 25

40

25 – 30

20

30 – 35

5

इन भूमि–स्वामित्वों के माध्यक और बहुलक साइज ज्ञात कीजिए। 


किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:

समय काल (सेकंडों में)

कॉलों की संख्या

95 – 125 14
125 – 155 22
155 – 185 28
185 – 215 21
215 – 245 15

इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।


एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं: 

दूरी (m में)

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

विद्यार्थियों की संख्या

6

11

17

12

4

माध्यक के सूत्र का प्रयोग करते हुए, माध्यक दूरी ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×