Advertisements
Advertisements
प्रश्न
किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है:
वर्षा (cm में) |
0 – 10 |
10 – 20 |
20 – 30 |
30 – 40 |
40 – 50 |
50 – 60 |
दिनों की संख्या |
22 |
10 |
8 |
15 |
5 |
6 |
'से कम प्रकार' और 'से अधिक प्रकार के' तोरणों का प्रयोग करके माध्यक वर्षा परिकलित कीजिए।
उत्तर
हम देखते हैं कि, 0 से कम वाले शहर का वार्षिक वर्षा रिकॉर्ड 0 होता है। इसी तरह, 10 से कम में 0 से शहर के वार्षिक वर्षा रिकॉर्ड के साथ-साथ 0 – 10 तक के शहर का वार्षिक वर्षा रिकॉर्ड भी शामिल होता है।
तो, 10 सेमी से कम वाले शहर का कुल वार्षिक वर्षा रिकॉर्ड 0 + 22 = 22 दिन है। इसी तरह आगे बढ़ते रहने पर हमें 20, 30, 40, 50 और 60 से कम शेष मिलेंगे।
इसके अलावा, हम देखते हैं कि किसी शहर का 66 दिनों का वार्षिक वर्षा रिकॉर्ड 0 सेमी से अधिक या उसके बराबर है। चूँकि, 22 दिन 0 – 10 के अंतराल में आते हैं। तो, 66 – 22 = 44 दिनों का वार्षिक वर्षा रिकॉर्ड 10 सेमी से अधिक या उसके बराबर है। इसी तरह आगे बढ़ते रहने पर हमें 20, 30, 40, 50 और 60 से अधिक या उसके बराबर शेष मिलेगा।
अब, हम इससे कम और इससे अधिक प्रकार के लिए एक तालिका बनाते हैं।
(i) से कम प्रकार |
(ii) से अधिक प्रकार |
||
वर्षा (cm में) |
दिनों की संख्या |
वर्षा (cm में) |
दिनों की संख्या |
0 से कम |
0 |
0 से अधिक या उसके बराबर |
66 |
10 से कम |
0 + 22 = 22 |
10 से अधिक या उसके बराबर |
66 – 22 = 44 |
20 से कम |
22 + 10 = 32 |
20 से अधिक या उसके बराबर |
44 – 10 = 34 |
30 से कम |
32 + 8 = 40 |
30 से अधिक या उसके बराबर |
34 – 8 = 26 |
40 से कम |
40 + 15 = 55 |
40 से अधिक या उसके बराबर |
26 – 15 = 11 |
50 से कम |
55 + 5 = 60 |
50 से अधिक या उसके बराबर |
11 – 5 = 6 |
60 से कम |
60 + 6 = 66 |
60 से अधिक या उसके बराबर |
6 – 6 = 0 |
प्रकार से कम तोरण निकालने के लिए हम बिंदुओं को आलेखित करते हैं (0, 0), (0, 22), (20, 32), (30, 40), (40, 55), (50, 60), (60, 66) कागज पर और मुक्त हाथ से उन्हें जोड़ दें।
अधिक प्रकार का तोरण निकालने के लिए हम बिंदुओं को आलेखित करते हैं (0, 66), (0, 44), (20, 34), (30, 26), (40, 77), (50, 6) और (60, 0) ग्राफ़ पेपर पर और उन्हें मुक्त हाथ से जोड़ दें।
∵ दिनों की कुल संख्या (n) = 66
अब, `n/2 = 33`
सबसे पहले, हम दोनों तोरणों के प्रतिच्छेदन बिंदु पर X-अक्ष के समानांतर एक रेखा खींचते हैं, जो आगे Y-अक्ष पर (0, 33) पर प्रतिच्छेद करती है। अब, हम दोनों तोरणों के प्रतिच्छेदन बिंदु पर एक्स-अक्ष पर लंबवत एक रेखा खींचते हैं, जो आगे चलकर एक्स-अक्ष पर (21.25, 0) पर प्रतिच्छेद करती है, जो तोरणों का उपयोग करके आवश्यक माध्यिका है।
अत:, औसत वर्षा = 21.25 सेमी।
APPEARS IN
संबंधित प्रश्न
हवा में SO2 की सांद्रता का पता लगाने के लिए (प्रति मिलियन भागों में, यानी, ppm), एक निश्चित शहर में 30 इलाकों के लिए डेटा एकत्र किया गया था और नीचे प्रस्तुत किया गया है:
SO2 की सांद्रता (ppm में) | आवृत्ति |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
हवा में SO2 की औसत सांद्रता ज्ञात कीजिए।
किसी कक्षा अध्यापिका ने पुरे सत्र के लिए अपनी कक्षा के 40 विधार्थियो की अनुपस्थिति निम्नलिखित रूप में रिकॉर्ड की। एक विधार्थी जितने दिन अनुपस्थित रहा उनका माध्य ज्ञात कीजिए:
Number of days | 0 - 6 | 6 - 10 | 10 -14 | 14 -20 | 20 -28 | 28 -38 | 38 -40 |
छात्रों की संख्या | 11 | 10 | 7 | 4 | 4 | 3 | 1 |
यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए:
कक्षा अन्तराल | आवृत्ति |
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
एक पौधे की 40 पत्तियों की लंबाइयाँ निकटतम मिलीमिटरों में मापी जाती है तथा प्राप्त आँकड़ों को निम्नलिखित सारणी के रुप में निरुपित किया जाता है:
लंबाई (mm में) | पत्तियों की संख्या |
118 − 126 | 3 |
127 − 135 | 5 |
136 − 144 | 9 |
145 − 153 | 12 |
154 − 162 | 5 |
163 − 171 | 4 |
172 − 180 | 2 |
पत्तियों की माध्यक लंबाई ज्ञात कीजिए।
संकेत: माध्यक ज्ञात करने के लिए, आँकड़ो को सतत वर्ग अंतरालों में बदलना पड़ेगा, क्योकिं सूत्र में वर्ग 117.5 - 126.5 , 126.5 - 135.5 ,…,171.5 - 180.5 अंतरालों को सतत माना गया है। तब ये वर्ग में बदल जाते है।
वर्ग |
0 – 5 |
6 – 11 |
12 – 17 |
18 – 23 |
24 – 29 |
बारंबारता |
13 |
10 |
15 |
8 |
11 |
बंटन में, माध्यक वर्ग की उपरि सीमा है-
अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) | पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' का तोरण खींचिए तथा इसका प्रयोग माध्यक भार ज्ञात करने में कीजए।
96 बच्चों की लंबाइयों (ऊँचाइयों) (cm में) का बंटन नीचे दिया गया है:
लंबाई (cm में) |
बच्चों की संख्या |
124 – 128 | 5 |
128 – 132 | 8 |
132 – 136 | 17 |
136 – 140 | 24 |
140 – 144 | 16 |
144 – 148 | 12 |
148 – 152 | 6 |
152 – 156 | 4 |
156 – 160 | 3 |
160 – 164 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' की संचयी बारंबारता वक्र खींचिए और इसका बच्चों की माध्यक लंबाई ज्ञात करने में प्रयोग कीजिए।
किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:
समय काल (सेकंडों में) |
कॉलों की संख्या |
95 – 125 | 14 |
125 – 155 | 22 |
155 – 185 | 28 |
185 – 215 | 21 |
215 – 245 | 15 |
इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
माध्यक के सूत्र का प्रयोग करते हुए, माध्यक दूरी ज्ञात कीजिए।