Advertisements
Advertisements
प्रश्न
वर्ग |
0 – 5 |
6 – 11 |
12 – 17 |
18 – 23 |
24 – 29 |
बारंबारता |
13 |
10 |
15 |
8 |
11 |
बंटन में, माध्यक वर्ग की उपरि सीमा है-
विकल्प
17
17.5
18
18.5
उत्तर
17.5
स्पष्टीकरण:
प्रश्न के अनुसार,
कक्षाएँ निरंतर नहीं हैं,
इसलिए, हम प्रत्येक वर्ग की निचली सीमा से 0.5 घटाकर और ऊपरी सीमा में 0.5 जोड़कर डेटा को निरंतर बनाते हैं।
वर्ग | बारंबारता | संचयी आवृत्ति |
0.5 – 5.5 | 13 | 13 |
6.5 – 11.5 | 10 | 23 |
11.5 – 17.5 | 15 | 38 |
17.5 – 23.5 | 8 | 46 |
23.5 – 29.5 | 11 | 57 |
प्रश्न के अनुसार,
`N/2 = 57/2 = 28.5`
28.5 अंतराल 11.5 – 17.5 के बीच में है।
इसलिए, ऊपरी सीमा 17.5 है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित वितरण एक इलाके के बच्चों के दैनिक जेब भत्ते को दर्शाता है। औसत जेब भत्ता 18 रुपये है। लापता आवृत्ति का पता लगाएं f ज्ञात कीजिए:
दैनिक जेब भत्ता (रुपये में) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
श्रमिकों की संख्या | 7 | 6 | 9 | 13 | f | 5 | 4 |
निम्नलिखित सरणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:
दैनिक व्यय (रुपये में) | 100 − 150 | 150 − 200 | 200 − 250 | 250 − 300 | 300 − 350 |
परिवारों की संख्या | 4 | 5 | 12 | 2 | 2 |
एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।
यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए:
कक्षा अन्तराल | आवृत्ति |
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
एक पौधे की 40 पत्तियों की लंबाइयाँ निकटतम मिलीमिटरों में मापी जाती है तथा प्राप्त आँकड़ों को निम्नलिखित सारणी के रुप में निरुपित किया जाता है:
लंबाई (mm में) | पत्तियों की संख्या |
118 − 126 | 3 |
127 − 135 | 5 |
136 − 144 | 9 |
145 − 153 | 12 |
154 − 162 | 5 |
163 − 171 | 4 |
172 − 180 | 2 |
पत्तियों की माध्यक लंबाई ज्ञात कीजिए।
संकेत: माध्यक ज्ञात करने के लिए, आँकड़ो को सतत वर्ग अंतरालों में बदलना पड़ेगा, क्योकिं सूत्र में वर्ग 117.5 - 126.5 , 126.5 - 135.5 ,…,171.5 - 180.5 अंतरालों को सतत माना गया है। तब ये वर्ग में बदल जाते है।
अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।
किसी क्रिकेट कोचिंग केंद्र पर 33 खिलाडियों की गेंदबाजी करने की अधिकतम चालें (km प्रति घंटा में) इस प्रकार है:
चाल (km/h) |
85 – 100 |
100 – 115 |
115 – 130 |
130 – 145 |
खिलाड़ियों की संख्या |
11 | 9 | 8 | 5 |
गेंदबाजी की माध्यक चाल परिकलित कीजिए।
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) | पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' और 'से अधिक प्रकार' के तोरण खींचिए तथा इनका माध्यक भार ज्ञात करने में प्रयोग कीजिए।
एक सर्वे के द्वारा 200 परिवारों के कृषि योग्य भूमि–स्वामित्व साइज नीचे सारणी मे दिये हैं:
कृषि योग्य भूमि स्वामित्व का साइज (ha में) |
परिवारों की संख्या |
0 – 5 |
10 |
5 – 10 |
15 |
10 – 15 |
30 |
15 – 20 |
80 |
20 – 25 |
40 |
25 – 30 |
20 |
30 – 35 |
5 |
इन भूमि–स्वामित्वों के माध्यक और बहुलक साइज ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
'से कम प्रकार की' एक संचयी बारंबारता वक्र खींचिए और इससे फेंकी गयी माध्यक दूरी ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
माध्यक के सूत्र का प्रयोग करते हुए, माध्यक दूरी ज्ञात कीजिए।