हिंदी

अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।

संक्षेप में उत्तर

उत्तर

समूहीकृत डेटा के माध्यिका की गणना करने के लिए, उपयोग किया गया सूत्र इस धारणा पर आधारित है कि कक्षाओं में अवलोकन समान रूप से वितरित या समान दूरी पर हैं।

इसलिए, हम यह नहीं कह सकते कि यह कथन "एक अवर्गीकृत डेटा का माध्यिका और समान डेटा को समूहीकृत करने पर गणना की गई माध्यिका हमेशा समान होती है" हमेशा सही होता है।

shaalaa.com
वर्गीकृत आँकड़ों का माध्यक
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: साँख्यिकी और प्रायिकता - प्रश्नावली 13.2 [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 13 साँख्यिकी और प्रायिकता
प्रश्नावली 13.2 | Q 1. | पृष्ठ १६४

संबंधित प्रश्न

निम्नलिखित सरणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:

दैनिक व्यय (रुपये में) 100 − 150 150 − 200 200 − 250 250 − 300 300 − 350
परिवारों की संख्या 4 5 12 2 2

एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।


यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए:

कक्षा अन्तराल आवृत्ति
0 - 10 5
10 - 20 x
20 - 30 20
30 - 40 15
40 - 50 y
50 - 60 5
Total 60

एक पौधे की 40 पत्तियों की लंबाइयाँ निकटतम मिलीमिटरों में मापी जाती है तथा प्राप्त आँकड़ों को निम्‍नलिखित सारणी के रुप में निरुपित किया जाता है:

लंबाई (mm में) पत्तियों की संख्या
118 − 126 3
127 − 135 5
136 − 144 9
145 − 153 12
154 − 162 5
163 − 171 4
172 − 180 2

पत्तियों की माध्यक लंबाई ज्ञात कीजिए।

संकेत: माध्यक ज्ञात करने के लिए, आँकड़ो को सतत वर्ग अंतरालों में बदलना पड़ेगा, क्योकिं सूत्र में वर्ग 117.5 - 126.5 , 126.5 - 135.5 ,…,171.5 - 180.5 अंतरालों को सतत माना गया है। तब ये वर्ग में बदल जाते है।


वर्ग

0 – 5

6 – 11

12 – 17

18 – 23

24 – 29

बारंबारता

13

10

15

8

11

बंटन में, माध्यक वर्ग की उपरि सीमा है-


वर्ग

65 – 85

85 – 105

105 – 125

125 – 145

145 – 165

165 – 185

185 – 205

बारंबारता

4

5

13

20

14

7

4

बंटन के लिए, माध्यक वर्ग की उपरि सीमा और बहुलक वर्ग की निम्न सीमा का अंतर है-


किसी क्रिकेट कोचिंग केंद्र पर 33 खिलाडियों की गेंदबाजी करने की अधिकतम चालें (km प्रति घंटा में) इस प्रकार है: 

चाल (km/h)

85 – 100

100 – 115

115 – 130

130 – 145

खिलाड़ियों की संख्या

11 9 8 5

गेंदबाजी की माध्यक चाल परिकलित कीजिए।


निम्नलिखित बंटन के लिए, माध्य प्राप्तांक ज्ञात कीजिए:

प्राप्तांक विद्यार्थियों की संख्या
0 और उससे अधिक 80 
10 और उससे अधिक 77
20 और उससे अधिक 72
30 और उससे अधिक 65
40 और उससे अधिक 55
50 और उससे अधिक 43
60 और उससे अधिक 28
70 और उससे अधिक 16
80 और उससे अधिक 10
90 और उससे अधिक 8
100 और उससे अधिक 0

70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में) पैकेटों की संख्या
200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन आँकड़ों के लिए, 'से कम प्रकार' और 'से अधिक प्रकार' के तोरण खींचिए तथा इनका माध्यक भार ज्ञात करने में प्रयोग कीजिए।


किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है:

वर्षा (cm में)

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

दिनों की संख्या

22

10

8

15

5

6

'से कम प्रकार' और 'से अधिक प्रकार के' तोरणों का प्रयोग करके माध्यक वर्षा परिकलित कीजिए।


एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:

दूरी (m में)

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

विद्यार्थियों की संख्या

6

11

17

12

4

क्या ऊपर (ii) और (iii) में प्राप्त किये गये माध्यक बराबर हैं?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×