English

अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।

Answer in Brief

Solution

समूहीकृत डेटा के माध्यिका की गणना करने के लिए, उपयोग किया गया सूत्र इस धारणा पर आधारित है कि कक्षाओं में अवलोकन समान रूप से वितरित या समान दूरी पर हैं।

इसलिए, हम यह नहीं कह सकते कि यह कथन "एक अवर्गीकृत डेटा का माध्यिका और समान डेटा को समूहीकृत करने पर गणना की गई माध्यिका हमेशा समान होती है" हमेशा सही होता है।

shaalaa.com
वर्गीकृत आँकड़ों का माध्यक
  Is there an error in this question or solution?
Chapter 13: साँख्यिकी और प्रायिकता - प्रश्नावली 13.2 [Page 164]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 13 साँख्यिकी और प्रायिकता
प्रश्नावली 13.2 | Q 1. | Page 164

RELATED QUESTIONS

निम्नलिखित वितरण एक इलाके के बच्चों के दैनिक जेब भत्ते को दर्शाता है। औसत जेब भत्ता 18 रुपये है। लापता आवृत्ति का पता लगाएं f ज्ञात कीजिए:

दैनिक जेब भत्ता (रुपये में)

11-13 13-15 15-17 17-19 19-21 21-23 23-25
श्रमिकों की संख्या 7 6 9 13 f 5 4

निम्नलिखित सरणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:

दैनिक व्यय (रुपये में) 100 − 150 150 − 200 200 − 250 250 − 300 300 − 350
परिवारों की संख्या 4 5 12 2 2

एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।


हवा में SO2 की सांद्रता का पता लगाने के लिए (प्रति मिलियन भागों में, यानी, ppm), एक निश्चित शहर में 30 इलाकों के लिए डेटा एकत्र किया गया था और नीचे प्रस्तुत किया गया है:

SO2 की सांद्रता (ppm में) आवृत्ति
0.00 − 0.04 4
0.04 − 0.08 9
0.08 − 0.12 9
0.12 − 0.16 2
0.16 − 0.20 4
0.20 − 0.24 2

हवा में SO2 की औसत सांद्रता ज्ञात कीजिए।


क्या दिये हुए वर्गीकृत आँकड़ों के लिए माध्यक वर्ग और बहुलक वर्ग सदैव भिन्न-भिन्न होंगे? अपने उत्तर का औचित्य दीजिए।


निम्नलिखित बंटन के लिए, माध्य प्राप्तांक ज्ञात कीजिए:

प्राप्तांक विद्यार्थियों की संख्या
0 और उससे अधिक 80 
10 और उससे अधिक 77
20 और उससे अधिक 72
30 और उससे अधिक 65
40 और उससे अधिक 55
50 और उससे अधिक 43
60 और उससे अधिक 28
70 और उससे अधिक 16
80 और उससे अधिक 10
90 और उससे अधिक 8
100 और उससे अधिक 0

70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में) पैकेटों की संख्या
200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन आँकड़ों के लिए, 'से कम प्रकार' और 'से अधिक प्रकार' के तोरण खींचिए तथा इनका माध्यक भार ज्ञात करने में प्रयोग कीजिए।


निम्नलिखित आँकड़ों का माध्यक 50 है। यदि सभी बारंबारताओं का योग 90 है, तो p और q के मान ज्ञात कीजिए।  

प्राप्तांक बारंबारता
20 – 30 p
30 – 40 15
40 – 50 25
50 – 60 20
60 – 70 q
70 – 80 8
80 – 90 10

किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है:

वर्षा (cm में)

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

दिनों की संख्या

22

10

8

15

5

6

'से कम प्रकार' और 'से अधिक प्रकार के' तोरणों का प्रयोग करके माध्यक वर्षा परिकलित कीजिए।


किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:

समय काल (सेकंडों में)

कॉलों की संख्या

95 – 125 14
125 – 155 22
155 – 185 28
185 – 215 21
215 – 245 15

इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।


एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:

दूरी (m में)

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

विद्यार्थियों की संख्या

6

11

17

12

4

क्या ऊपर (ii) और (iii) में प्राप्त किये गये माध्यक बराबर हैं?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×