Advertisements
Advertisements
प्रश्न
वर्ग |
0 – 5 |
6 – 11 |
12 – 17 |
18 – 23 |
24 – 29 |
बारंबारता |
13 |
10 |
15 |
8 |
11 |
बंटन में, माध्यक वर्ग की उपरि सीमा है-
पर्याय
17
17.5
18
18.5
उत्तर
17.5
स्पष्टीकरण:
प्रश्न के अनुसार,
कक्षाएँ निरंतर नहीं हैं,
इसलिए, हम प्रत्येक वर्ग की निचली सीमा से 0.5 घटाकर और ऊपरी सीमा में 0.5 जोड़कर डेटा को निरंतर बनाते हैं।
वर्ग | बारंबारता | संचयी आवृत्ति |
0.5 – 5.5 | 13 | 13 |
6.5 – 11.5 | 10 | 23 |
11.5 – 17.5 | 15 | 38 |
17.5 – 23.5 | 8 | 46 |
23.5 – 29.5 | 11 | 57 |
प्रश्न के अनुसार,
`N/2 = 57/2 = 28.5`
28.5 अंतराल 11.5 – 17.5 के बीच में है।
इसलिए, ऊपरी सीमा 17.5 है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सरणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:
दैनिक व्यय (रुपये में) | 100 − 150 | 150 − 200 | 200 − 250 | 250 − 300 | 300 − 350 |
परिवारों की संख्या | 4 | 5 | 12 | 2 | 2 |
एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।
हवा में SO2 की सांद्रता का पता लगाने के लिए (प्रति मिलियन भागों में, यानी, ppm), एक निश्चित शहर में 30 इलाकों के लिए डेटा एकत्र किया गया था और नीचे प्रस्तुत किया गया है:
SO2 की सांद्रता (ppm में) | आवृत्ति |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
हवा में SO2 की औसत सांद्रता ज्ञात कीजिए।
एक स्थानीय टेलीफ़ोन निर्देशिका से 100 कुलनाम लिए गए और उनमें प्रयुक्त अंग्रेज़ी वर्णमाला के अक्षरों की संख्या का निम्नलिखित बारंबारता बंटन प्राप्त हुआ:
अक्षरों की संख्या | उपनामों की संख्या |
1 - 4 | 6 |
4 − 7 | 30 |
7 - 10 | 40 |
10 - 13 | 6 |
13 - 16 | 4 |
16 − 19 | 4 |
कुलनामों में माध्यक अक्षरों की संख्या ज्ञात कीजिए। कुलनामों में माध्य अक्षरों की संख्या ज्ञात कीजिए। साथ ही, कुलनामों का बहुलक ज्ञात कीजिए।
अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) | पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' का तोरण खींचिए तथा इसका प्रयोग माध्यक भार ज्ञात करने में कीजए।
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) | पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' और 'से अधिक प्रकार' के तोरण खींचिए तथा इनका माध्यक भार ज्ञात करने में प्रयोग कीजिए।
96 बच्चों की लंबाइयों (ऊँचाइयों) (cm में) का बंटन नीचे दिया गया है:
लंबाई (cm में) |
बच्चों की संख्या |
124 – 128 | 5 |
128 – 132 | 8 |
132 – 136 | 17 |
136 – 140 | 24 |
140 – 144 | 16 |
144 – 148 | 12 |
148 – 152 | 6 |
152 – 156 | 4 |
156 – 160 | 3 |
160 – 164 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' की संचयी बारंबारता वक्र खींचिए और इसका बच्चों की माध्यक लंबाई ज्ञात करने में प्रयोग कीजिए।
किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है:
वर्षा (cm में) |
0 – 10 |
10 – 20 |
20 – 30 |
30 – 40 |
40 – 50 |
50 – 60 |
दिनों की संख्या |
22 |
10 |
8 |
15 |
5 |
6 |
'से कम प्रकार' और 'से अधिक प्रकार के' तोरणों का प्रयोग करके माध्यक वर्षा परिकलित कीजिए।
किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:
समय काल (सेकंडों में) |
कॉलों की संख्या |
95 – 125 | 14 |
125 – 155 | 22 |
155 – 185 | 28 |
185 – 215 | 21 |
215 – 245 | 15 |
इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
'से कम प्रकार की' एक संचयी बारंबारता वक्र खींचिए और इससे फेंकी गयी माध्यक दूरी ज्ञात कीजिए।