मराठी

एक स्थानीय टेलीफ़ोन निर्देशिका से 100 कुलनाम लिए गए और उनमें प्रयुक्त अंग्रेज़ी वर्णमाला के अक्षरों की संख्या का निम्‍नलिखित बारंबारता बंटन प्राप्त हुआ: - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक स्थानीय टेलीफ़ोन निर्देशिका से 100 कुलनाम लिए गए और उनमें प्रयुक्त अंग्रेज़ी वर्णमाला के अक्षरों की संख्या का निम्‍नलिखित बारंबारता बंटन प्राप्त हुआ:

अक्षरों की संख्या उपनामों की संख्या
1 - 4 6
4 − 7 30
7 - 10 40
10 - 13 6
13 - 16 4
16 − 19 4

कुलनामों में माध्यक अक्षरों की संख्या ज्ञात कीजिए। कुलनामों में माध्य अक्षरों की संख्या ज्ञात कीजिए। साथ ही, कुलनामों का बहुलक ज्ञात कीजिए।

बेरीज

उत्तर

उनके संबंधित वर्ग अंतरालों के साथ संचयी बारंबारताएं इस प्रकार हैं।

यह देखा जा सकता है कि दो क्रमागत उच्च वर्ग सीमाओं के बीच का अंतर 2 है। उनकी संबंधित आवृत्तियों के साथ वर्ग अंक नीचे दिए गए हैं

अक्षरों की संख्या आवृत्ति संचयी आवृत्ति
1 − 4 0 6
4 − 7 30 30 + 6 = 36
7 − 10 40 36 + 40 = 76
10 − 13 16 76 + 16 = 92
13 − 16 4 92 + 4 = 96
16 − 19 4 96 + 4 = 100
Total (n) 100  

यह देखा जा सकता है कि` n/2 ("अर्थात" 100/2 = 50)` से अधिक की संचयी आवृत्ति 76 है, जो वर्ग अंतराल 7 - 10 से संबंधित है।

माध्यिका वर्ग = 7 - 10

माध्यिका वर्ग की निचली सीमा (l) = 7

माध्यिका वर्ग के पूर्ववर्ती वर्ग की संचयी बारंबारता (cf) = 36

माध्यिका वर्ग की बारंबारता (f) = 40

वर्ग आकार (h) = 3

`"माध्यिका" = l +((n/2-cf)/f) xxh`

= `7+((50-36)/40)xx3`

= `7+(14xx3)/40`

= 8.05

दिए गए वर्ग अंतरालों के वर्ग चिह्न ज्ञात करने के लिए निम्नलिखित संबंध का उपयोग किया जाता है।

`"वर्ग चिह्न" = ("उच्च वर्ग सीमा + निम्न वर्ग सीमा")/2`

कल्पित माध्य (a), di, ui, और fiui के रूप में 11.5 लेते हुए, चरण विचलन विधि के अनुसार निम्नानुसार गणना की जाती है

अक्षरों की संख्या

उपनामों की संख्या fi

xi

di = xi − 11.5

`ui =d_i/3`

fiui

1 − 4

6

2.5

− 9

− 3

−18

4 − 7

30

5.5

− 6

− 2

− 60

7 − 10

40

8.5

− 3

− 1

− 40

10 − 13

16

11.5

0

0

0

13 − 16

4

14.5

3

1

4

16 − 19

4

17.5

6

2

8

Total

100

     

−106

तालिका से, हम प्राप्त करते हैं

`sumf_i = -106`

`sumf_iu_i = 100`

माध्य `barx = a+ ((sumf_iu_i)/(sumf_i))xx h`

= `11.5+((-106)/100)xx3`

= 11.5 − 3.18

= 8.32

दी गई तालिका में डेटा को इस प्रकार लिखा जा सकता है:

अक्षरों की संख्या आवृत्ति (fi)
1 − 4 6
4 − 7 30
7 − 10 40
10 − 13 16
13 − 16 4
16 − 19 4
Total (n) 100

तालिका से, यह देखा जा सकता है कि वर्ग अंतराल 7-10 से संबंधित अधिकतम वर्ग बारंबारता 40 है।

बहुलक वर्ग = 7 − 10

बहुलक वर्ग की निचली सीमा (l) = 7

वर्ग आकार (h) = 3

बहुलक वर्ग की बारंबारता (f1) = 40

बहुलक वर्ग से पहले के वर्ग की बारंबारता (f0) = 30

बहुलक वर्ग के बाद आने वाले वर्ग की बारंबारता (f2) = 16

`"बहुलक " = L+((f_1-f_0)/(2f_1-f_0-f_2))xxh`

= `7+[(40-30)/(2(40)-30-16)]xx3`

= `7 + 10/34 xx 3`

= `7+30/34`

= 7.88

इसलिए, उपनामों में माध्यिका संख्या और औसत अक्षरों की संख्या क्रमशः 8.05 और 8.32 है जबकि उपनामों का मोडल आकार 7.88 है।

shaalaa.com
वर्गीकृत आँकड़ों का माध्यक
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: सांख्यिकी - प्रश्नावली 14.3 [पृष्ठ ३१६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 14 सांख्यिकी
प्रश्नावली 14.3 | Q 6. | पृष्ठ ३१६

संबंधित प्रश्‍न

निम्नलिखित वितरण एक इलाके के बच्चों के दैनिक जेब भत्ते को दर्शाता है। औसत जेब भत्ता 18 रुपये है। लापता आवृत्ति का पता लगाएं f ज्ञात कीजिए:

दैनिक जेब भत्ता (रुपये में)

11-13 13-15 15-17 17-19 19-21 21-23 23-25
श्रमिकों की संख्या 7 6 9 13 f 5 4

निम्नलिखित सरणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:

दैनिक व्यय (रुपये में) 100 − 150 150 − 200 200 − 250 250 − 300 300 − 350
परिवारों की संख्या 4 5 12 2 2

एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।


हवा में SO2 की सांद्रता का पता लगाने के लिए (प्रति मिलियन भागों में, यानी, ppm), एक निश्चित शहर में 30 इलाकों के लिए डेटा एकत्र किया गया था और नीचे प्रस्तुत किया गया है:

SO2 की सांद्रता (ppm में) आवृत्ति
0.00 − 0.04 4
0.04 − 0.08 9
0.08 − 0.12 9
0.12 − 0.16 2
0.16 − 0.20 4
0.20 − 0.24 2

हवा में SO2 की औसत सांद्रता ज्ञात कीजिए।


किसी कक्षा अध्यापिका ने पुरे सत्र के लिए अपनी कक्षा के 40 विधार्थियो की अनुपस्थिति निम्नलिखित रूप में रिकॉर्ड की। एक विधार्थी जितने दिन अनुपस्थित रहा उनका माध्य ज्ञात कीजिए:

Number of days 0 - 6 6 - 10 10 -14 14 -20 20 -28 28 -38 38 -40
छात्रों की संख्या 11 10 7 4 4 3 1

निम्‍नलिखित सारणी 400 नियाॅन लैंपों के जीवन कालों को प्रदर्शित करती है:

जीवन काल (घंटों में) लैंप की संख्या
1500 – 2000 14
2000 – 2500 56
2500 – 3000 60
3000 – 3500 86
3500 – 4000 74
4000 – 4500 62
4500 – 5000 48

एक लैंप का माध्यक जीवन काल ज्ञात कीजिए।


70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में) पैकेटों की संख्या
200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन आँकड़ों के लिए, 'से कम प्रकार' का तोरण खींचिए तथा इसका प्रयोग माध्यक भार ज्ञात करने में कीजए।


निम्नलिखित आँकड़ों का माध्यक 50 है। यदि सभी बारंबारताओं का योग 90 है, तो p और q के मान ज्ञात कीजिए।  

प्राप्तांक बारंबारता
20 – 30 p
30 – 40 15
40 – 50 25
50 – 60 20
60 – 70 q
70 – 80 8
80 – 90 10

किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है:

वर्षा (cm में)

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

दिनों की संख्या

22

10

8

15

5

6

'से कम प्रकार' और 'से अधिक प्रकार के' तोरणों का प्रयोग करके माध्यक वर्षा परिकलित कीजिए।


एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं: 

दूरी (m में)

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

विद्यार्थियों की संख्या

6

11

17

12

4

'से कम प्रकार की' एक संचयी बारंबारता वक्र खींचिए और इससे फेंकी गयी माध्यक दूरी ज्ञात कीजिए।


एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:

दूरी (m में)

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

विद्यार्थियों की संख्या

6

11

17

12

4

क्या ऊपर (ii) और (iii) में प्राप्त किये गये माध्यक बराबर हैं?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×