मराठी

नीचे दिया हुआ बंटन एक कक्षा के 30 विद्धार्थी के भार दर्शा रहा है। विद्धार्थियों का माध्यक भार ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

नीचे दिया हुआ बंटन एक कक्षा के 30 विद्यार्थियों के भार दर्शा रहा है। विद्यार्थियों का माध्यक भार ज्ञात कीजिए।

वजन (किलो में) 40−45 45−50 50−55 55−60 60−65 65−70 70−75
छात्रों की संख्या 2 3 8 6 6 3 2
बेरीज

उत्तर

उनके संबंधित वर्ग अंतराल के साथ संचयी बारंबारताएं इस प्रकार हैं:

वजन (किलो में) आवृत्ति (fi) संचयी आवृत्ति
40 − 45 2 2
45 − 50 3 2 + 3 = 5
50 − 55 8 5 + 8 = 13
55 − 60 6 13 + 6 = 19
60 − 65 6 19 + 6 = 25
65 − 70 3 25 + 3 = 28
70 − 75 2 28 + 2 = 30
कुल (n) 30  

`n/2 ("अर्थात"  30/2 = 15)` से अधिक संचयी आवृत्ति 19 है, जो वर्ग अंतराल 55 − 60 से संबंधित है।

माध्यिका वर्ग = 55 - 60

माध्यिका वर्ग की निचली सीमा (l) = 55

माध्यिका वर्ग की बारंबारता (f) = 6

माध्यिका वर्ग की संचयी बारंबारता (cf) = 13

वर्ग आकार (h) = 5

`"माध्यिका" = l +((n/2-cf)/f)xxh`

= `55+((15-13)/6)xx5`

=`55+10/6`

= 55 + 1.66

= 56.67

अत: माध्यक भार 56.67 किग्रा है। 

shaalaa.com
वर्गीकृत आँकड़ों का माध्यक
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: सांख्यिकी - प्रश्नावली 14.3 [पृष्ठ ३१६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 14 सांख्यिकी
प्रश्नावली 14.3 | Q 7. | पृष्ठ ३१६

संबंधित प्रश्‍न

निम्नलिखित वितरण एक इलाके के बच्चों के दैनिक जेब भत्ते को दर्शाता है। औसत जेब भत्ता 18 रुपये है। लापता आवृत्ति का पता लगाएं f ज्ञात कीजिए:

दैनिक जेब भत्ता (रुपये में)

11-13 13-15 15-17 17-19 19-21 21-23 23-25
श्रमिकों की संख्या 7 6 9 13 f 5 4

यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए:

कक्षा अन्तराल आवृत्ति
0 - 10 5
10 - 20 x
20 - 30 20
30 - 40 15
40 - 50 y
50 - 60 5
Total 60

वर्ग

0 – 5

6 – 11

12 – 17

18 – 23

24 – 29

बारंबारता

13

10

15

8

11

बंटन में, माध्यक वर्ग की उपरि सीमा है-


वर्ग

65 – 85

85 – 105

105 – 125

125 – 145

145 – 165

165 – 185

185 – 205

बारंबारता

4

5

13

20

14

7

4

बंटन के लिए, माध्यक वर्ग की उपरि सीमा और बहुलक वर्ग की निम्न सीमा का अंतर है-


अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।


क्या दिये हुए वर्गीकृत आँकड़ों के लिए माध्यक वर्ग और बहुलक वर्ग सदैव भिन्न-भिन्न होंगे? अपने उत्तर का औचित्य दीजिए।


600 परिवारों की साप्ताहिक आय नीचे सारणीबद्ध है:

साप्ताहिक आय
(रू में) 
परिवारों की संख्या
0 – 1000 250
1000 – 2000 190
2000 – 3000 100
3000 – 4000 40
4000 – 5000 15
5000 – 6000 5
कुल 600

माध्यम आय अभिकलित कीजिए।


70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:

भार (ग्राम में) पैकेटों की संख्या
200 – 201 13
201 – 202 27
202 – 203 18
203 – 204 10
204 – 205 1
205 – 206 1

इन आँकड़ों के लिए, 'से कम प्रकार' और 'से अधिक प्रकार' के तोरण खींचिए तथा इनका माध्यक भार ज्ञात करने में प्रयोग कीजिए।


96 बच्चों की लंबाइयों (ऊँचाइयों) (cm में) का बंटन नीचे दिया गया है:

लंबाई (cm में)

बच्चों की संख्या

124 – 128 5
128 – 132 8
132 – 136 17
136 – 140 24
140 – 144 16
144 – 148 12
148 – 152 6
152 – 156 4
156 – 160 3
160 – 164 1

इन आँकड़ों के लिए, 'से कम प्रकार' की संचयी बारंबारता वक्र खींचिए और इसका बच्चों की माध्यक लंबाई ज्ञात करने में प्रयोग कीजिए।


किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:

समय काल (सेकंडों में)

कॉलों की संख्या

95 – 125 14
125 – 155 22
155 – 185 28
185 – 215 21
215 – 245 15

इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×