Advertisements
Advertisements
प्रश्न
यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए:
कक्षा अन्तराल | आवृत्ति |
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
उत्तर
दिए गए डेटा के लिए संचयी आवृत्ति की गणना निम्नानुसार की जाती है:
कक्षा अन्तराल | आवृत्ति | संचयी आवृत्ति |
0 - 10 | 5 | 5 |
10 - 20 | x | 5 + x |
20-30 | 20 | 25 + x |
30 - 40 | 15 | 40 + x |
40 - 50 | y | 40 + x + y |
50 - 60 | 5 | 45 + x + y |
कुल (n) | 60 |
तालिका से यह देखा जा सकता है, कि n = 60
45 + x + y = 60
x + y = 15 (1)
आँकड़ों का माध्यक 28.5 के रूप में दिया गया है जो अंतराल 20 − 30 में स्थित है।
अत: माध्यिका वर्ग = 20 − 30
माध्यिका वर्ग की निचली सीमा (L) = 20
माध्यिका वर्ग के पूर्ववर्ती वर्ग की संचयी बारंबारता (cf) = 5 + x
माध्यिका वर्ग की बारंबारता (f) = 20 वर्ग आकार (h) = 10
माध्यिका = `l + (((n/2)-cf)/f) xxh`
`28.5 = 20 + [(60/2-(5+x))/20]xx10`
`8.5 = ((25-x)/2)`
17 = 25 − x
8 + y = 15
y = 7
अत: x और y के मान क्रमशः 8 और 7 हैं।
APPEARS IN
संबंधित प्रश्न
हवा में SO2 की सांद्रता का पता लगाने के लिए (प्रति मिलियन भागों में, यानी, ppm), एक निश्चित शहर में 30 इलाकों के लिए डेटा एकत्र किया गया था और नीचे प्रस्तुत किया गया है:
SO2 की सांद्रता (ppm में) | आवृत्ति |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
हवा में SO2 की औसत सांद्रता ज्ञात कीजिए।
निम्नलिखित सारणी 400 नियाॅन लैंपों के जीवन कालों को प्रदर्शित करती है:
जीवन काल (घंटों में) | लैंप की संख्या |
1500 – 2000 | 14 |
2000 – 2500 | 56 |
2500 – 3000 | 60 |
3000 – 3500 | 86 |
3500 – 4000 | 74 |
4000 – 4500 | 62 |
4500 – 5000 | 48 |
एक लैंप का माध्यक जीवन काल ज्ञात कीजिए।
एक स्थानीय टेलीफ़ोन निर्देशिका से 100 कुलनाम लिए गए और उनमें प्रयुक्त अंग्रेज़ी वर्णमाला के अक्षरों की संख्या का निम्नलिखित बारंबारता बंटन प्राप्त हुआ:
अक्षरों की संख्या | उपनामों की संख्या |
1 - 4 | 6 |
4 − 7 | 30 |
7 - 10 | 40 |
10 - 13 | 6 |
13 - 16 | 4 |
16 − 19 | 4 |
कुलनामों में माध्यक अक्षरों की संख्या ज्ञात कीजिए। कुलनामों में माध्य अक्षरों की संख्या ज्ञात कीजिए। साथ ही, कुलनामों का बहुलक ज्ञात कीजिए।
नीचे दिया हुआ बंटन एक कक्षा के 30 विद्यार्थियों के भार दर्शा रहा है। विद्यार्थियों का माध्यक भार ज्ञात कीजिए।
वजन (किलो में) | 40−45 | 45−50 | 50−55 | 55−60 | 60−65 | 65−70 | 70−75 |
छात्रों की संख्या | 2 | 3 | 8 | 6 | 6 | 3 | 2 |
अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।
क्या दिये हुए वर्गीकृत आँकड़ों के लिए माध्यक वर्ग और बहुलक वर्ग सदैव भिन्न-भिन्न होंगे? अपने उत्तर का औचित्य दीजिए।
निम्नलिखित आँकड़ों का माध्यक 50 है। यदि सभी बारंबारताओं का योग 90 है, तो p और q के मान ज्ञात कीजिए।
प्राप्तांक | बारंबारता |
20 – 30 | p |
30 – 40 | 15 |
40 – 50 | 25 |
50 – 60 | 20 |
60 – 70 | q |
70 – 80 | 8 |
80 – 90 | 10 |
किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है:
वर्षा (cm में) |
0 – 10 |
10 – 20 |
20 – 30 |
30 – 40 |
40 – 50 |
50 – 60 |
दिनों की संख्या |
22 |
10 |
8 |
15 |
5 |
6 |
'से कम प्रकार' और 'से अधिक प्रकार के' तोरणों का प्रयोग करके माध्यक वर्षा परिकलित कीजिए।
किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:
समय काल (सेकंडों में) |
कॉलों की संख्या |
95 – 125 | 14 |
125 – 155 | 22 |
155 – 185 | 28 |
185 – 215 | 21 |
215 – 245 | 15 |
इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
माध्यक के सूत्र का प्रयोग करते हुए, माध्यक दूरी ज्ञात कीजिए।