Advertisements
Advertisements
प्रश्न
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) | पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' का तोरण खींचिए तथा इसका प्रयोग माध्यक भार ज्ञात करने में कीजए।
उत्तर
हम देखते हैं कि, 200 से कम पैकेटों की संख्या 0 है।
इसी प्रकार, 201 से कम में 0 – 200 तक पैकेटों की संख्या के साथ-साथ 200 – 201 तक पैकेटों की संख्या भी शामिल है।
तो, 201 से कम पैकेटों की कुल संख्या 0 + 13 = 13 है।
हम कहते हैं कि, वर्ग 200 – 201 की संचयी आवृत्ति 13 है।
इसी प्रकार अन्य वर्ग के लिए भी।
से कम प्रकार |
|
भार (ग्राम में) |
पैकेटों की संख्या |
200 से कम |
0 |
201 से कम |
0 + 13 = 13 |
202 से कम |
27 + 13 = 40 |
203 से कम |
18 + 40 = 58 |
204 से कम |
10 + 58 = 68 |
205 से कम |
1 + 68 = 69 |
206 से कम |
1 + 69 = 70 |
से कम प्रकार का तोरण निकालने के लिए, हम बिंदुओं को आलेखित करते हैं (200, 0), (201, 13), (202, 40) (203, 58), (204, 68), (205, 69) और (206, 70) कागज पर और मुक्त हाथ से जुड़ें।
∴ पैकेटों की कुल संख्या (n) = 70
सबसे पहले, हम Y-अक्ष पर एक बिंदु (0, 35) आलेखित करते हैं और X-अक्ष के समानांतर एक रेखा y = 35 खींचते हैं।
रेखा तोरण से कम वक्र को एक बिंदु पर काटती है।
हम उस बिंदु पर एक रेखा खींचते हैं जो X-अक्ष पर लंबवत है।
X-अक्ष पर लंबवत रेखा का पाद आवश्यक माध्यिका है।
∴ माध्यिका भार = 201.8 ग्राम
APPEARS IN
संबंधित प्रश्न
निम्नलिखित वितरण एक इलाके के बच्चों के दैनिक जेब भत्ते को दर्शाता है। औसत जेब भत्ता 18 रुपये है। लापता आवृत्ति का पता लगाएं f ज्ञात कीजिए:
दैनिक जेब भत्ता (रुपये में) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
श्रमिकों की संख्या | 7 | 6 | 9 | 13 | f | 5 | 4 |
निम्नलिखित सरणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:
दैनिक व्यय (रुपये में) | 100 − 150 | 150 − 200 | 200 − 250 | 250 − 300 | 300 − 350 |
परिवारों की संख्या | 4 | 5 | 12 | 2 | 2 |
एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।
किसी कक्षा अध्यापिका ने पुरे सत्र के लिए अपनी कक्षा के 40 विधार्थियो की अनुपस्थिति निम्नलिखित रूप में रिकॉर्ड की। एक विधार्थी जितने दिन अनुपस्थित रहा उनका माध्य ज्ञात कीजिए:
Number of days | 0 - 6 | 6 - 10 | 10 -14 | 14 -20 | 20 -28 | 28 -38 | 38 -40 |
छात्रों की संख्या | 11 | 10 | 7 | 4 | 4 | 3 | 1 |
यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए:
कक्षा अन्तराल | आवृत्ति |
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
वर्ग |
65 – 85 |
85 – 105 |
105 – 125 |
125 – 145 |
145 – 165 |
165 – 185 |
185 – 205 |
बारंबारता |
4 |
5 |
13 |
20 |
14 |
7 |
4 |
बंटन के लिए, माध्यक वर्ग की उपरि सीमा और बहुलक वर्ग की निम्न सीमा का अंतर है-
अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।
किसी क्रिकेट कोचिंग केंद्र पर 33 खिलाडियों की गेंदबाजी करने की अधिकतम चालें (km प्रति घंटा में) इस प्रकार है:
चाल (km/h) |
85 – 100 |
100 – 115 |
115 – 130 |
130 – 145 |
खिलाड़ियों की संख्या |
11 | 9 | 8 | 5 |
गेंदबाजी की माध्यक चाल परिकलित कीजिए।
किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:
समय काल (सेकंडों में) |
कॉलों की संख्या |
95 – 125 | 14 |
125 – 155 | 22 |
155 – 185 | 28 |
185 – 215 | 21 |
215 – 245 | 15 |
इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
माध्यक के सूत्र का प्रयोग करते हुए, माध्यक दूरी ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
क्या ऊपर (ii) और (iii) में प्राप्त किये गये माध्यक बराबर हैं?