Advertisements
Advertisements
Question
एक पौधे की 40 पत्तियों की लंबाइयाँ निकटतम मिलीमिटरों में मापी जाती है तथा प्राप्त आँकड़ों को निम्नलिखित सारणी के रुप में निरुपित किया जाता है:
लंबाई (mm में) | पत्तियों की संख्या |
118 − 126 | 3 |
127 − 135 | 5 |
136 − 144 | 9 |
145 − 153 | 12 |
154 − 162 | 5 |
163 − 171 | 4 |
172 − 180 | 2 |
पत्तियों की माध्यक लंबाई ज्ञात कीजिए।
संकेत: माध्यक ज्ञात करने के लिए, आँकड़ो को सतत वर्ग अंतरालों में बदलना पड़ेगा, क्योकिं सूत्र में वर्ग 117.5 - 126.5 , 126.5 - 135.5 ,…,171.5 - 180.5 अंतरालों को सतत माना गया है। तब ये वर्ग में बदल जाते है।
Solution
दिए गए डेटा में निरंतर वर्ग अंतराल नहीं है। यह देखा जा सकता है कि दो वर्ग अंतरालों के बीच का अंतर 1 है। इसलिए, `1/2 = 0.5` को क्रमशः उच्च वर्ग सीमा और निम्न वर्ग सीमा में जोड़ा और घटाया जाना है।
संबंधित संचयी बारंबारताओं के साथ सतत वर्ग अंतराल को निम्नानुसार दर्शाया जा सकता है।
लंबाई (मिमी में) | पत्तियों की संख्या fi | संचयी आवृत्ति |
117.5 − 126.5 | 3 | 3 |
126.5 − 135.5 | 5 | 3 + 5 = 8 |
135.5 − 144.5 | 9 | 8 + 9 = 17 |
144.5 − 153.5 | 12 | 17 + 12 = 29 |
153.5 − 162.5 | 5 | 29 + 5 = 34 |
162.5 − 171.5 | 4 | 34 + 4 = 38 |
171.5 − 180.5 | 2 | 38 + 2 = 40 |
तालिका से, यह देखा जा सकता है कि `N/2 (40/2 = 20)` से ठीक अधिक संचयी आवृत्ति 29 है, जो वर्ग अंतराल 144.5 - 153.5 से संबंधित है।
माध्यिका वर्ग = 144.5 − 153.5
माध्यिका वर्ग की निचली सीमा (l) = 144.5
वर्ग आकार (h) = 9
माध्यिका वर्ग की बारंबारता (f) = 12
माध्यिका वर्ग के पूर्ववर्ती वर्ग की संचयी बारंबारता (cf) = 17
माध्यिका = `l + ((N/2 - F)/f) xxh`
= `144.5 + ((20-17)/12)xx9`
= `144.5+9/4=146.75`
इसलिए, पत्तियों की औसत लंबाई 146.75 mm है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित वितरण एक इलाके के बच्चों के दैनिक जेब भत्ते को दर्शाता है। औसत जेब भत्ता 18 रुपये है। लापता आवृत्ति का पता लगाएं f ज्ञात कीजिए:
दैनिक जेब भत्ता (रुपये में) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
श्रमिकों की संख्या | 7 | 6 | 9 | 13 | f | 5 | 4 |
निम्नलिखित सरणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:
दैनिक व्यय (रुपये में) | 100 − 150 | 150 − 200 | 200 − 250 | 250 − 300 | 300 − 350 |
परिवारों की संख्या | 4 | 5 | 12 | 2 | 2 |
एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।
हवा में SO2 की सांद्रता का पता लगाने के लिए (प्रति मिलियन भागों में, यानी, ppm), एक निश्चित शहर में 30 इलाकों के लिए डेटा एकत्र किया गया था और नीचे प्रस्तुत किया गया है:
SO2 की सांद्रता (ppm में) | आवृत्ति |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
हवा में SO2 की औसत सांद्रता ज्ञात कीजिए।
यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए:
कक्षा अन्तराल | आवृत्ति |
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
एक स्थानीय टेलीफ़ोन निर्देशिका से 100 कुलनाम लिए गए और उनमें प्रयुक्त अंग्रेज़ी वर्णमाला के अक्षरों की संख्या का निम्नलिखित बारंबारता बंटन प्राप्त हुआ:
अक्षरों की संख्या | उपनामों की संख्या |
1 - 4 | 6 |
4 − 7 | 30 |
7 - 10 | 40 |
10 - 13 | 6 |
13 - 16 | 4 |
16 − 19 | 4 |
कुलनामों में माध्यक अक्षरों की संख्या ज्ञात कीजिए। कुलनामों में माध्य अक्षरों की संख्या ज्ञात कीजिए। साथ ही, कुलनामों का बहुलक ज्ञात कीजिए।
नीचे दिया हुआ बंटन एक कक्षा के 30 विद्यार्थियों के भार दर्शा रहा है। विद्यार्थियों का माध्यक भार ज्ञात कीजिए।
वजन (किलो में) | 40−45 | 45−50 | 50−55 | 55−60 | 60−65 | 65−70 | 70−75 |
छात्रों की संख्या | 2 | 3 | 8 | 6 | 6 | 3 | 2 |
किसी क्रिकेट कोचिंग केंद्र पर 33 खिलाडियों की गेंदबाजी करने की अधिकतम चालें (km प्रति घंटा में) इस प्रकार है:
चाल (km/h) |
85 – 100 |
100 – 115 |
115 – 130 |
130 – 145 |
खिलाड़ियों की संख्या |
11 | 9 | 8 | 5 |
गेंदबाजी की माध्यक चाल परिकलित कीजिए।
निम्नलिखित आँकड़ों का माध्यक 50 है। यदि सभी बारंबारताओं का योग 90 है, तो p और q के मान ज्ञात कीजिए।
प्राप्तांक | बारंबारता |
20 – 30 | p |
30 – 40 | 15 |
40 – 50 | 25 |
50 – 60 | 20 |
60 – 70 | q |
70 – 80 | 8 |
80 – 90 | 10 |
किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:
समय काल (सेकंडों में) |
कॉलों की संख्या |
95 – 125 | 14 |
125 – 155 | 22 |
155 – 185 | 28 |
185 – 215 | 21 |
215 – 245 | 15 |
इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
क्या ऊपर (ii) और (iii) में प्राप्त किये गये माध्यक बराबर हैं?