Advertisements
Advertisements
Question
निम्नलिखित सारणी, सारिका द्वारा स्वयं अपनी पुस्तक को पूर्ण करने के लिए 30 दिन तक लिखे गये पृष्ठों को दर्शाती है:
प्रतिदिन लिखे पृष्ठों की संख्या |
16 – 18 |
19 – 21 |
22 – 24 |
25 – 27 |
28 – 30 |
दिनों की संख्या |
1 |
3 |
4 |
9 |
13 |
प्रतिदिन लिखे गए माध्य पृष्ठों की संख्या ज्ञात कीजिए।
Solution
वर्ग-अंतरालों को सतत अंतरालों में बदलने की कोई आवश्यकता नहीं है क्योंकि सतत और असंतत वर्गों के वर्ग चिह्न समान होते हैं।
di कल्पित माध्य से विचलन है।
प्रतिदिन लिखे पृष्ठों की संख्या |
मध्य-बिंदु
`(bb(x_i))`
|
`bb(d_i = (x_i - a))` | दिनों की संख्या `(bb(f_i))` |
`bb(f_i d_i)` |
16 – 18 | 17 | – 6 | 1 | – 6 |
19 – 21 | 20 | – 3 | 3 | – 9 |
22 – 24 | a = 23 | 0 | 4 | 0 |
25 – 27 | 26 | 3 | 9 | 27 |
28 – 30 | 29 | 6 | 13 | 78 |
`sumf_i = 30` | `sumf_i d_i = 90` |
a = कल्पित माध्य, a = 23
`barx = a+ (sumf_i d_i)/(sumf_i)`
= `23 + 90/30`
= 23 + 3
= 26
∴ `barx` = 26
अत: प्रतिदिन लिखे गए पृष्ठों का माध्य 26 है।
APPEARS IN
RELATED QUESTIONS
विद्यार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अंतर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए। प्रति घर माध्य पौधों की संख्या ज्ञात कीजिए।
पौधों की संख्या | 0 - 2 | 2 - 4 | 4 - 6 | 6 - 8 | 8 - 10 | 10 - 12 | 12 - 14 |
घरों की संख्या | 1 | 2 | 1 | 5 | 6 | 2 | 3 |
माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों?
किसी फुटकर बाजार में, फल विक्रेता पेटियों में रखे आम बेच रहे थे। इन पेटियों में आमों की संख्याएँ भिन्न-भिन्न थी। पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था:
आम की संख्या | 50 − 52 | 53 − 55 | 56 − 58 | 59 − 61 | 62 − 64 |
बक्सों की संख्या | 15 | 110 | 135 | 115 | 25 |
एक पैकिंग बॉक्स में रखे आमों की औसत संख्या ज्ञात कीजिए। आपने माध्य ज्ञात करने का कौन सा तरीका चुना?
यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है।
वर्गीकृत आँकड़ों की ‘से कम प्रकार' और 'से अधिक प्रकार' की संचयी बारंबारता वक्रों के प्रतिच्छेद बिंदु के भुज से आंकड़ों का प्राप्त होना है:
निम्नलिखित आँकड़ों का माध्य परिकलित कीजिए :
वर्ग |
4 – 7 |
8 – 11 |
12 – 15 |
16 – 19 |
बारंबारता |
5 |
4 |
9 | 10 |
50 कर्मचारियों के एक प्रतिदर्श की दैनिक आय निम्नलिखित रूप में सारणीबद्ध है:
आय (रु में) |
1 – 200 |
201 – 400 |
401 – 600 |
601 – 800 |
कर्मचारियों की संख्या |
14 | 15 | 14 | 7 |
कर्मचारियों की माध्य दैनिक आय ज्ञात कीजिए।
निम्नलिखित बंटन का माध्य निर्धारित कीजिए:
प्राप्तांक | विद्यार्थियों की संख्या |
10 से कम | 5 |
20 से कम | 9 |
30 से कम | 17 |
40 से कम | 29 |
50 से कम | 45 |
60 से कम | 60 |
70 से कम | 70 |
80 से कम | 78 |
90 से कम | 83 |
100 से कम | 85 |
निम्नलिखित आँकड़ों से एक शहर के 100 निवासियों की माध्य आयु ज्ञात कीजिए:
आयु बराबर और उससे अधिक (वर्षों में) |
0 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
व्यक्तियों की संख्या |
100 |
90 |
75 |
50 |
25 |
15 |
5 |
0 |
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) |
पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन पैकेटों का माध्य भार ज्ञात कीजिए।
निम्नलिखित बारंबारता बंटन का माध्य 50 है, परंतु 20 – 40 और 60 – 80 वर्गों की बारंबारताएँ क्रमशः f1 और f2 ज्ञात नहीं हैं। ये बारंबारताएँ ज्ञात कीजिए, यदि सभी बारंबारताओं का योग 120 है।
वर्ग |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
बारंबारता |
17 |
f1
|
32 |
f2
|
19 |