Advertisements
Advertisements
Question
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) |
पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन पैकेटों का माध्य भार ज्ञात कीजिए।
Solution
सबसे पहले, हम दिए गए डेटा के वर्ग चिह्न निम्नानुसार पाते है।
भार |
पैकेटों की संख्या |
वर्ग चिह्न |
विचलन |
`bb(f_i d_i)`
|
200 – 201 |
13 |
200.5 |
– 3 |
– 39 |
201 – 202 |
27 |
201.5 |
– 2 |
– 54 |
202 – 203 |
18 |
202.5 |
– 1 |
– 18 |
203 – 204 |
10 |
a = 203.5 |
0 |
0 |
204 – 205 |
1 |
204.5 |
1 |
1 |
205 – 206 |
1 |
205.5 |
2 |
2 |
|
`N = sumf_i = 70`
|
|
|
`sumf_i d_i = -108`
|
यहाँ, (माध्य मान लें) a = 203.5
और (वर्ग चौड़ाई) h = 1
कल्पित माध्य विधि से,
माध्य `(barx) = a + (sumf_i d_i)/(sumf_i)`
= `203.5 - 108/70`
= 203.5 – 1.54
= 201.96
अतः, आवश्यक औसत वजन 201.96 ग्राम है।
APPEARS IN
RELATED QUESTIONS
विद्यार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अंतर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए। प्रति घर माध्य पौधों की संख्या ज्ञात कीजिए।
पौधों की संख्या | 0 - 2 | 2 - 4 | 4 - 6 | 6 - 8 | 8 - 10 | 10 - 12 | 12 - 14 |
घरों की संख्या | 1 | 2 | 1 | 5 | 6 | 2 | 3 |
माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों?
एक कारखाने के 50 श्रमिकों के दैनिक वेतन के निम्नलिखित वितरण पर विचार करें।
दैनिक मजदूरी (रुपये में) |
500 - 520 |
520 - 540 |
540 - 560 |
560 - 580 |
580 - 600 |
श्रमिकों की संख्या | 12 |
14 |
8 |
6 |
10 |
एक उपयुक्त विधि का उपयोग करके कारखाने के श्रमिकों की औसत दैनिक मजदूरी ज्ञात कीजिए।
किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:
हृदय स्पंदन की प्रति मिनट संख्या | 65 - 68 | 68 - 71 | 71 - 74 | 74 - 77 | 77 - 80 | 80 - 83 | 83 - 86 |
महिलाओं की संख्या | 2 | 4 | 3 | 8 | 7 | 4 | 2 |
यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है।
निम्नलिखित आँकड़ों का माध्य परिकलित कीजिए :
वर्ग |
4 – 7 |
8 – 11 |
12 – 15 |
16 – 19 |
बारंबारता |
5 |
4 |
9 | 10 |
50 कर्मचारियों के एक प्रतिदर्श की दैनिक आय निम्नलिखित रूप में सारणीबद्ध है:
आय (रु में) |
1 – 200 |
201 – 400 |
401 – 600 |
601 – 800 |
कर्मचारियों की संख्या |
14 | 15 | 14 | 7 |
कर्मचारियों की माध्य दैनिक आय ज्ञात कीजिए।
50 पहलवानों के भार (kg में) नीचे सारणी में दिये हैं:
भार (kg में) |
100 – 110 |
110 – 120 |
120 – 130 |
130 – 140 |
140 – 150 |
पहलवानों की संख्या |
4 |
14 |
21 |
8 |
3 |
इन पहलवानों का माध्य भार ज्ञात कीजिए।
किसी कार निर्माता द्वारा एक ही मॉडल की 50 कारों की माइलेज़ (अर्थात एक लीटर ईंधन में कितने km चलती हैं) की जाँच की, जिसके परिणाम नीचे सारणीबद्ध हैं:
माइलेज (km/L) |
10 – 12 |
12 – 14 |
14 – 16 |
16 – 18 |
कारों की संख्या |
7 |
12 |
18 |
13 |
माध्य माइलेज ज्ञात कीजिए। निर्माता यह दावा करता है कि इस माइलेज 16 km/L है। क्या आप इस दावे से सहमत है?
निम्नलिखित आँकड़ों से एक शहर के 100 निवासियों की माध्य आयु ज्ञात कीजिए:
आयु बराबर और उससे अधिक (वर्षों में) |
0 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
व्यक्तियों की संख्या |
100 |
90 |
75 |
50 |
25 |
15 |
5 |
0 |
निम्नलिखित बारंबारता बंटन का माध्य 50 है, परंतु 20 – 40 और 60 – 80 वर्गों की बारंबारताएँ क्रमशः f1 और f2 ज्ञात नहीं हैं। ये बारंबारताएँ ज्ञात कीजिए, यदि सभी बारंबारताओं का योग 120 है।
वर्ग |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
बारंबारता |
17 |
f1
|
32 |
f2
|
19 |