Advertisements
Advertisements
Question
निम्नलिखित बंटन का माध्य निर्धारित कीजिए:
प्राप्तांक | विद्यार्थियों की संख्या |
10 से कम | 5 |
20 से कम | 9 |
30 से कम | 17 |
40 से कम | 29 |
50 से कम | 45 |
60 से कम | 60 |
70 से कम | 70 |
80 से कम | 78 |
90 से कम | 83 |
100 से कम | 85 |
Solution
यहां, हमने देखा कि, 5 छात्रों ने 10 से नीचे अंक प्राप्त किए हैं, यानी यह कक्षा अंतराल 0 – 10 के बीच है और 9 छात्रों ने 20 से नीचे अंक प्राप्त किए हैं।
तो, (9 – 5) = 4 छात्र कक्षा अंतराल 10 – 20 में हैं।
इसी प्रकार जारी रखते हुए, हमें दिए गए डेटा के लिए पूर्ण आवृत्ति वितरण तालिका प्राप्त होती है।
प्राप्तांक |
विद्याथियों की संख्या |
वर्ग चिह्न |
`bb(u_i =(x_i - a)/h =(x_i - 45)/h)`
|
`bb(f_iu_i)`
|
0 – 10 |
5 |
5 |
– 4 |
– 20 |
10 – 20 |
9 – 5 = 4 |
15 |
– 3 |
– 12 |
20 – 30 |
17 – 9 = 8 |
25 |
– 2 |
– 16 |
30 – 40 |
29 – 17 = 12 |
35 |
– 1 |
– 12 |
40 – 50 |
45 – 29 = 16 |
a = 45 |
0 |
0 |
50 – 60 |
60 – 45 = 15 |
55 |
1 |
15 |
60 – 70 |
70 – 60 = 10 |
65 |
2 |
20 |
70 – 80 |
78 – 70 = 8 |
75 |
3 |
24 |
80 – 90 |
83 – 78 = 5 |
85 |
4 |
20 |
90 – 100 |
85 – 83 = 2 |
95 |
5 |
10 |
|
`N = sumf_i = 85`
|
|
|
`sumf_iu_i = 29`
|
यहाँ, (अनुमानित माध्य) a = 45
और (वर्ग चौड़ाई) h = 10
चरण विचलन विधि द्धारा,
माध्य `(barx) = a + (sumf_iu_i)/(sumf_i) xx h`
= `45 + 29/85 xx 10`
= `45 + 58/17`
= 45 + 3.41
= 48.41
APPEARS IN
RELATED QUESTIONS
विद्यार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अंतर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए। प्रति घर माध्य पौधों की संख्या ज्ञात कीजिए।
पौधों की संख्या | 0 - 2 | 2 - 4 | 4 - 6 | 6 - 8 | 8 - 10 | 10 - 12 | 12 - 14 |
घरों की संख्या | 1 | 2 | 1 | 5 | 6 | 2 | 3 |
माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों?
किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचें दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:
हृदय स्पंदन की प्रति मिनट संख्या | 65 - 68 | 68 - 71 | 71 - 74 | 74 - 77 | 77 - 80 | 80 - 83 | 83 - 86 |
महिलाओं की संख्या | 2 | 4 | 3 | 8 | 7 | 4 | 2 |
किसी फुटकर बाजार में, फल विक्रेता पेटियों में रखे आम बेच रहे थे। इन पेटियों में आमों की संख्याएँ भिन्न-भिन्न थी। पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था:
आम की संख्या | 50 − 52 | 53 − 55 | 56 − 58 | 59 − 61 | 62 − 64 |
बक्सों की संख्या | 15 | 110 | 135 | 115 | 25 |
एक पैकिंग बॉक्स में रखे आमों की औसत संख्या ज्ञात कीजिए। आपने माध्य ज्ञात करने का कौन सा तरीका चुना?
वर्गीकृत आँकड़ों का माध्य अभिकलित करते समय, हम यह कल्पना करते हैं कि बारंबारताएँ ______।
यदि xi वर्गीकृत आँकड़ों के वर्ग अंतरालों के मध्य-बिंदु हैं, fi इनकी संगत बारंबारताएँ हैं तथा `barx` माध्य है, तो `sum(f_ix_i - barx)` बराबर ______है।
वर्गीकृत आँकड़ों की ‘से कम प्रकार' और 'से अधिक प्रकार' की संचयी बारंबारता वक्रों के प्रतिच्छेद बिंदु के भुज से आंकड़ों का प्राप्त होना है:
वर्गीकृत आँकड़ों का माध्य परिकलित करने के लिए, हम सूत्र `barx = a + (sumf_i d_i)/(sumf_i)` का प्रयोग कर सकते है, जब सभी वर्गों की वर्गमाप बराबर हैं, a कल्पित माध्य है तथा a को वर्गों के मध्य-बिंदुओं में से कोई एक होना चाहिए। क्या अंतिम कथन सत्य है? अपने उत्तर का औचित्य दीजिए।
निम्नलिखित सारणी, सारिका द्वारा स्वयं अपनी पुस्तक को पूर्ण करने के लिए 30 दिन तक लिखे गये पृष्ठों को दर्शाती है:
प्रतिदिन लिखे पृष्ठों की संख्या |
16 – 18 |
19 – 21 |
22 – 24 |
25 – 27 |
28 – 30 |
दिनों की संख्या |
1 |
3 |
4 |
9 |
13 |
प्रतिदिन लिखे गए माध्य पृष्ठों की संख्या ज्ञात कीजिए।
50 पहलवानों के भार (kg में) नीचे सारणी में दिये हैं:
भार (kg में) |
100 – 110 |
110 – 120 |
120 – 130 |
130 – 140 |
140 – 150 |
पहलवानों की संख्या |
4 |
14 |
21 |
8 |
3 |
इन पहलवानों का माध्य भार ज्ञात कीजिए।
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) |
पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन पैकेटों का माध्य भार ज्ञात कीजिए।