Advertisements
Advertisements
प्रश्न
किसी नाट्यगृह में कुर्सियों की कुल 27 कतारें हैं। पहली कतार में कुल 20 कुर्सियाँ हैं, दूसरी कतार में 22 कुर्सियाँ तथा तीसरी कतार में कुल 24 कुर्सियाँ हैं तथा आगे भी इस प्रकार हों, तो नाट्यगृह में कुल कितनी कुर्सियाँ होंगी?
उत्तर
पहली कतार में 20 कुर्सियाँ, दूसरी कतार में 22 कुर्सियाँ, तीसरी कतार में 24 कुर्सियाँ, ..........
इस प्रकार 20, 22, 24, .......... अनुक्रमणिका प्राप्त होता है।
सामान्य अंतर (d) = 22 – 20 = 24 – 22 = 2
∴ 20, 22, 24, .......... यह एक अंकगणितीय श्रृंखला है।
यहाँ, a = 20 तथा d = 2 है।
हमें, नाट्यगृह म॑ स्थित कुल कुर्सियां की संख्या ज्ञात करनी है।
अर्थात, S27 = ?
Sn = `n/2 [2a + (n - 1)d]` ...(सूत्र)
∴ S27 = `27/2 [(2 xx 20) + (27 - 1)2]`
= `27/2 [40 + (26 xx 2)]`
= `27/2 [40 + 52]`
= `27/2 xx 92`
∴ S27 = 1242
APPEARS IN
संबंधित प्रश्न
सानिका ने 1 जनवरी 2016 को निश्चित किया कि उस दिन ₹ 10, दूसरे दिन ₹ 11, तीसरे दिन ₹ 12 इस प्रकार बचत करते रहना है। 31 डिसेंबर 2016 तक उसकी कुल बचत कितनी हुई?
किसी व्यक्ति ने ₹ 8000 कर्ज लिया तथा उस पर ₹ 1360 ब्याज देने का वादा किया। प्रत्येक किस्त के बाद ₹ 40 कम करते हुए कुल 12 किस्तों मेंं उसने कर्ज का भुगतान कर दिया, तो उस व्यक्ति द्वारा भुगतान की गई पहली तथा अंतिम किस्त कितनी होगी?
सचिन द्वारा राष्ट्रीय बचत प्रमाणपत्र मेंं पहले वर्ष ₹ 5000, दूसरे वर्ष ₹ 7000, तीसरे वर्ष ₹ 9000 इस प्रकार निवेश किया गया तो सचिन ने 12 वर्षों मेंं कुल कितना निवेश किया?
कारगिल मेंं किसी सप्ताह के सोमवार से शनिवार तक का तापमान दर्ज किया गया। बाद मेंं ध्यान आया कि दर्ज जानकारी अंकगणितीय श्रृंखला मेंं है। सोमवार तथा शनिवार के तापमान का योगफल मंगलवार तथा शनिवार के तापमान के योगफल से 5° अधिक है। यदि बुधवार का तापमान −30° सेल्सियस हो तो प्रत्येक दिन का तापमान ज्ञात कीजिए।
1 से n तक की प्राकृत संख्याओं का योगफल 36 हो तो n का मान ज्ञात कीजिए।
एक अंकगणितीय श्रृंखला मेंं 37 पद हैं। सबसे मध्य के तीन पदों का योगफल 225 है और अंतिम तीन पदों का योगफल 429 हो तो अंकगणितीय श्रृंखला लिखिए।
जिस अंकगणितीय श्रृंखला का प्रथम पद a, दूसरा पद b और अंतिम पद c हो तो उस श्रृंखला के सभी पदों का योगफल `(("a" + "c") ("b" + "c" - 2"a"))/2 ("b" - "a")` है सिद्ध कीजिए।
यदि किसी अंकगणितीय श्रृंखला के पहले p पदों का योग पहले q पदों के योगफल के बराबर हो दिखाइए कि उसके पहले (p + q) पदों का योगफल शून्य है। (p ≠ q)
₹ 1000 का 10% साधारण ब्याज की दर से निवेश किया तो प्रत्येक वर्ष के अंत मेंं मिलने वाली ब्याज की रकम अंकगणितीय श्रृंखला होगी क्या? जाँच कीजिए। यदि अंकगणितीय श्रृंखला में हो तो 20 वर्ष के पश्चात प्राप्त होने वाली ब्याज की रकम ज्ञात कीजिए। इसके लिए नीचे दी गई कृति पूर्ण कीजिए।
साधारण ब्याज = `("P" xx "R" xx "N")/100`
1 वर्ष के पश्चात प्राप्त होने वाला साधारण ब्याज = `(1000 xx 10 xx 1)/100` = `square`
2 वर्ष के पश्चात प्राप्त होने वाला साधारण ब्याज = `(1000 xx 10 xx 2)/100` = `square`
3 वर्ष के पश्चात प्राप्त होने वाला साधारण ब्याज = `(square xx square xx square)/100` = 300
इस प्रकार 4, 5, 6 वर्षों के पश्चात प्राप्त होने वाला ब्याज क्रमश: 400, `square`, `square` होगा।
इस संख्या के आधार पर d = `square`, और a = `square`
20 वर्ष के पश्चात प्राप्त होने वाला ब्याज
tn = a + (n − 1)d
t20 = `square` + (20 − 1) `square`
t20 = `square`
20 वर्ष के पश्चात प्राप्त कुल ब्याज = `square`
किसी त्रिभुज के कोणों के माप अंकगणितीय श्रृंखला में हैं। सबसे छोटे कोण का माप सामान्य अंतर के 5 गुना है। उस त्रिभुज के सभी कोणों के माप ज्ञात करो। (त्रिभुज के कोणों के माप a, a + d, a + 2d लो।)