मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (हिंदी माध्यम) इयत्ता १० वी

किसी व्यक्ति ने ₹ 8000 कर्ज लिया तथा उस पर ₹ 1360 ब्याज देने का वादा किया। प्रत्येक किस्त के बाद ₹ 40 कम करते हुए कुल 12 किस्तों मेंं उसने कर्ज का भुगतान कर दिया, तो उस व्यक्ति द्वारा भुगतान - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

प्रश्न

किसी व्यक्ति ने ₹ 8000 कर्ज लिया तथा उस पर ₹ 1360 ब्याज देने का वादा किया। प्रत्येक किस्त के बाद ₹ 40 कम करते हुए कुल 12 किस्तों मेंं उसने कर्ज का भुगतान कर दिया, तो उस व्यक्ति द्वारा भुगतान की गई पहली तथा अंतिम किस्त कितनी होगी?

बेरीज

उत्तर

व्यक्ति द्वारा भुगतान की जाने वाली कुल रकम (राशि) = 8000 + 1360 = ₹ 9360

d = दो क्रमिक किस्तों का अंतर = (−40) ....(प्रत्येक किस्त ₹ 40 कम)

∴ सामान्य अंतर अचर है।

∴ यह अंकगणितीय श्रृंखला है।

किस्तों की संख्या = 12

∴ n = 12

12 किस्तों मेंं कुल भुगतान की गई राशि = S12 = ₹ 9360

∴ क्रमिक 12 किस्तों का योगफल = S12 = 9360

Sn = `"n"/2 [2"a" + ("n" - 1)"d"]` .......(सूत्र)

∴ S12 = `12/2 [2"a" + (12 - 1) xx (-40)]`

∴ 9360 = 6 [2a + 11 × (−40)]

∴ 9360 = 6(2a − 440)

∴ 9360 = 12a − 2640

∴ 9360 + 2640 = 12a

∴ 12a = 12000

∴ a = 1000

∴ पहली किस्त = ₹ 1000

tn = अंतिम किस्त

अब, tn = a + (n − 1)d .....(सूत्र)

∴ t12 = 1000 + (12 − 1) × (−40)

∴ t12 = 1000 + 11 (−40)

= 1000 − 440

= 560

∴ अंतिम किस्त = ₹ 560

∴ पहले किस्त की राशि ₹ 1000 तथा अंतिम किस्त की राशि ₹ 560 है।

shaalaa.com
अंकगणितीय शृंखला के उपयोजन (Application of A.P.)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: अंकगणितीय श्रृंखला - प्रश्नसंग्रह 3.4 [पृष्ठ ७८]

APPEARS IN

बालभारती Algebra (Mathematics 1) [Hindi] 10 Standard SSC Maharashtra State Board
पाठ 3 अंकगणितीय श्रृंखला
प्रश्नसंग्रह 3.4 | Q (2) | पृष्ठ ७८

संबंधित प्रश्‍न

सानिका ने 1 जनवरी 2016 को निश्चित किया कि उस दिन ₹ 10, दूसरे दिन ₹ 11, तीसरे दिन ₹ 12 इस प्रकार बचत करते रहना है। 31 डिसेंबर 2016 तक उसकी कुल बचत कितनी हुई?


सचिन द्वारा राष्ट्रीय बचत प्रमाणपत्र मेंं पहले वर्ष ₹ 5000, दूसरे वर्ष ₹ 7000, तीसरे वर्ष ₹ 9000 इस प्रकार निवेश किया गया तो सचिन ने 12 वर्षों मेंं कुल कितना निवेश किया?


किसी नाट्यगृह मेंं कुर्सियों की कुल 27 कतारें हैं। पहली कतार मेंं कुल 20 कुर्सियाँ हैं, दूसरी कतार मेंं कुल 22 कुर्सियाँ तथा तीसरी कतार में कुल 24 कुर्सियाँ हों तो 15 वीं कतार मेंं कुल कितनी कुर्सियाँ होंगी तथा नाट्यगृह मेंं कुल कितनी कुर्सियाँ होंगी?


कारगिल मेंं किसी सप्ताह के सोमवार से शनिवार तक का तापमान दर्ज किया गया। बाद मेंं ध्यान आया कि दर्ज जानकारी अंकगणितीय श्रृंखला मेंं है। सोमवार तथा शनिवार के तापमान का योगफल मंगलवार तथा शनिवार के तापमान के योगफल से 5° अधिक है। यदि बुधवार का तापमान −30° सेल्सियस हो तो प्रत्येक दिन का तापमान ज्ञात कीजिए।


1 से n तक की प्राकृत संख्याओं का योगफल 36 हो तो n का मान ज्ञात कीजिए।


एक अंकगणितीय श्रृंखला मेंं 37 पद हैं। सबसे मध्य के तीन पदों का योगफल 225 है और अंतिम तीन पदों का योगफल 429 हो तो अंकगणितीय श्रृंखला लिखिए।


जिस अंकगणितीय श्रृंखला का प्रथम पद a, दूसरा पद b और अंतिम पद c हो तो उस श्रृंखला के सभी पदों का योगफल `(("a" + "c") ("b" + "c" - 2"a"))/2 ("b" - "a")` है सिद्‌ध कीजिए।


यदि किसी अंकगणितीय श्रृंखला के पहले p पदों का योग पहले q पदों के योगफल के बराबर हो दिखाइए कि उसके पहले (p + q) पदों का योगफल शून्य है। (p ≠ q)


अंकगणितीय श्रृंखला को m वें पद का m गुना यह n वें पद के n गुने के बराबर हो तो दिखाइए कि उसका (m + n) वाँ पद शून्य होता है।


किसी त्रिभुज के कोणों के माप अंकगणितीय श्रृंखला में हैं। सबसे छोटे कोण का माप सामान्य अंतर के 5 गुना है। उस त्रिभुज के सभी कोणों के माप ज्ञात करो। (त्रिभुज के कोणों के माप a, a + d, a + 2d लो।)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×