Advertisements
Advertisements
प्रश्न
Let A = `|(3 , 2),(0 ,5)|` and B = `|(1 ,0),(1 ,2)|` , find (i) (A + B)(A - B) (ii) A2 - B2 . Is (i) equal to (ii) ?
उत्तर
(i) A = `|(3 , 2),(0 ,5)|_(2 xx 2)` , B = `|(1 ,0),(1 ,2)|_(2 xx 2)`
A + B = `|(3+1 , 2+0),(0+1 ,5 +2)| = |(4,2),(1,7)|_(2xx2)`
A - B = `|(3-1 , 2-0),(0-1 , 5-2)| = |(2 , 2),(-1,3)|_(2 xx 2)`
(A + B)(A - B) = `|(4 , 2),(1 , 7)| |(2 , 2),(-1,3)|`
`=|(8 - 2 , 8+6),(2 - 7 , 2+21)| = |(6,14),(-5,23)|` .......(1)
(ii) A2
= `|(3,2),(0,5)| |(3,2),(0,5)| = |(9+0 , 6+10),(0 + 0 , 0+25)| = |(9,16),(0,25)|_(2 xx 2)`
B2 = `|(1 ,0),(1 ,2)| |(1 ,0),(1 ,2)| = |(1+0 , 0 + 0),(1 + 2 , 0 + 4)| = |(1 , 0),(3 , 4)|_(2 xx 2)`
A2 - B2 = `|(9,16),(0,25)| - |(1 , 0),(3 , 4)| = |(8,16),(-3 ,21)|_(2 xx 2)` ..............(2)
from (1) and (2)
(i) ≠ (ii)
APPEARS IN
संबंधित प्रश्न
Find x and y from the given equations:
`[(5, 2),(-1, y - 1)] - [(1, x - 1),(2, -3)] = [(4, 7),(-3, 2)]`
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(A + B) . C = A . C + B . C
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(A – B) . C = A . C – B . C
Find cofactors of the elements of the matrix A = `[[-1,2],[-3,4]]`
Classify the following matrix :
`|(11 , 3 , 0),(21 , 8 , 4),(15,5,2)|`
If P = `|(8,5),(7,2)|` find P - Pt
If A = `|(1,3),(3,2)|` and B = `|(-2 , 3),(-4 , 1)|` find BA
If A = `[(2, 3), (1, 2)], B = [(1, 0),(3, 1)]`, Find (AB)-1
Solve the equation x + y = 4 and 2x - y = 5 using the method of reduction.
If A = `[(1,0,0),(2,1,0),(3,3,1)]` then find A-1 by using elementary transformation .