Advertisements
Advertisements
प्रश्न
If A = `[(2, 3), (1, 2)], B = [(1, 0),(3, 1)]`, Find (AB)-1
उत्तर
A = `[(2, 3), (1, 2)] , B = [(1, 0),(3, 1)]`
AB = `[(2, 3), (1, 2)] [(1, 0),(3, 1)] = [(11, 3),(7, 2)]`
`|AB| = [(11, 3),(7, 2)] = 22 - 21 = 1 ≠ 0`
To find (AB)-1
(AB).(AB)-1
`[(11, 3),(7, 2)](AB)^-1 = [(1, 0), (0, 1)]`
`R_1 -> (1/11)R`
`[(1, 3/11), (7, 2)](AB)^-1 = [(1/11, 0), (0, 1)]`
`R_2 -> R_2 - 7R_1`
`[(1, 3/11), (0, 1/11)](AB)^-1 = [(1/11, 0), (-7/11, 1)]`
`R_1 -> R_1 - 3R_2`
`[(1, 0), (0, 1/11)](AB)^-1 = [(2, -3), (-7/11, 1)]`
`R_2 -> (11)R_2`
`[(1, 0), (0, 1)](AB)^-1 = [(2, -3),(-7, 11)]`
`therefore (AB)^-1 = [(2, -3),(-7, 11)]`
APPEARS IN
संबंधित प्रश्न
State, whether the following statement is true or false. If false, give a reason.
Transpose of a 2 × 1 matrix is a 2 × 1 matrix.
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – C
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A + B – C
Evaluate:
`2[(-1 0)/(2 -3)] +[(3 3)/(5 0)]`
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(A + B) . C = A . C + B . C
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
A . (B – C) = A . B – A . C
If M = `[(2,1),(1,-2)] `; find M2, M3 and M5.
Classify the following matrix :
`|(11 , 3 , 0),(21 , 8 , 4),(15,5,2)|`
Find the values of x and y, if `|(3"x" - "y"),(5)| = |(7) , ("x + y")|`
If P= (8,5),(7,2) find : P + Pt
If A = `|("p","q"),(8,5)|` , B = `|(3"p",5"q"),(2"q" , 7)|` and if A + B = `|(12,6),(2"r" , 3"s")|` , find the values of p,q,r and s.
Evaluate the following :
`|(2 , 3),(-4 , 0)| |(3 , -2),(-1 , 4)|`
Evaluate the following :
`|(2,1) ,(3,2),(1 , 1)| |(1 , -2 , 1),(2 , 1 , 3)|`
Write the negation of the following statements :
(a) Radha likes tea or coffee.
(b) `∃x cc` R such that x + 3 ≥ 10.
If A = `[(1,0,0),(2,1,0),(3,3,1)]` then find A-1 by using elementary transformation .
`[(2 ,- 4),(0 ,0),(1 , 7)]`
`[(0, 0, 0),(0, 0, 0)]`
Construct a 2 x 2 matrix whose elements aij are given by aij = i.j
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the order of the matrix X
If a matrix A = `[(0, 1),(2, -1)]` and matrix B = `[(3),(1)]`, then which of the following is possible: