Advertisements
Advertisements
प्रश्न
If A = `[(2, 3), (1, 2)], B = [(1, 0),(3, 1)]`, Find (AB)-1
उत्तर
A = `[(2, 3), (1, 2)] , B = [(1, 0),(3, 1)]`
AB = `[(2, 3), (1, 2)] [(1, 0),(3, 1)] = [(11, 3),(7, 2)]`
`|AB| = [(11, 3),(7, 2)] = 22 - 21 = 1 ≠ 0`
To find (AB)-1
(AB).(AB)-1
`[(11, 3),(7, 2)](AB)^-1 = [(1, 0), (0, 1)]`
`R_1 -> (1/11)R`
`[(1, 3/11), (7, 2)](AB)^-1 = [(1/11, 0), (0, 1)]`
`R_2 -> R_2 - 7R_1`
`[(1, 3/11), (0, 1/11)](AB)^-1 = [(1/11, 0), (-7/11, 1)]`
`R_1 -> R_1 - 3R_2`
`[(1, 0), (0, 1/11)](AB)^-1 = [(2, -3), (-7/11, 1)]`
`R_2 -> (11)R_2`
`[(1, 0), (0, 1)](AB)^-1 = [(2, -3),(-7, 11)]`
`therefore (AB)^-1 = [(2, -3),(-7, 11)]`
APPEARS IN
संबंधित प्रश्न
State, whether the following statement is true or false. If false, give a reason.
If A and B are two matrices of orders 3 × 2 and 2 × 3 respectively; then their sum A + B is possible.
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A + B – C
Wherever possible, write the following as a single matrix.
`[(0, 1, 2),(4, 6, 7)] + [(3, 4),(6, 8)]`
Evaluate:
`2[(-1 0)/(2 -3)] +[(3 3)/(5 0)]`
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(B . C) . A = B . (C . A)
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
A2 – B2 = (A + B) (A – B)
Classify the following matrix :
`[(7, 0)]`
Find the values of a, b, c and d, if `|("a + 3b", 3"c" + "d"),(2"a" - "b" , "c" - 2"d")| = |(5 , 8),(3 , 5)|`
Evaluate the following :
`|(2,1) ,(3,2),(1 , 1)| |(1 , -2 , 1),(2 , 1 , 3)|`
If P =`|(1 , 2),(3 , 4)|` , Q = `|(5 , 1),(7 , 4)|` and R = `|(2 , 1),(4 , 2)|` find the value of P(Q + R)
If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.
If A = `[(1,2), (1,3)]`, find A2 - 3A
Solve the equations x + y = 4 and 2x - y = 5 using the method of reduction.
If A = `[(7,1), (2,5)]` and B = `[(1,2), (3,-1)]` then verify that |AB| = |A| |B|.
If A = `[(1,0,0),(2,1,0),(3,3,1)]` then find A-1 by using elementary transformation .
[2 3 – 7]
`[(3),(0),(-1)]`
Construct a 2 x 2 matrix whose elements aij are given by aij = 2i – j
I2 is the matrix ____________.