Advertisements
Advertisements
प्रश्न
Let X be a continuous random variable with probability density function
f(x) = `{{:(3/x^4",", x ≥ 1),(0",", "otherwise"):}`
Find the mean and variance of X
उत्तर
Let x be a continuous random variable.
In the probability density function
Mean E(x) = `int_oo^oo x"f"(x) "d"x`
Here E(x) = `int_1^oo x(3/x^4)`
= `3int_1^oo 1/x^3 "d"x`
Here E(x) = `int_1^oo x^-3 "d"x`
= `3[x^(-3 + 1)/(-3 + 1)]_1^oo`
= `3int_1^oo x^-3 "d"x`
= `3(x^(-3 + 1)/(-3 + 1))_1^oo`
= `3/(-2) (x^2)_1^oo`
= `(-3)/2 [1/x^2]_1^oo`
= `3/(-2) [1/oo^2 - 1/(1)^2]`
= `- 3/2 [0 - 1]`
= `3/2`
∴ E(x) = `3/2`
`"E"(x^2) = int_(-oo)^oo x^2"f"(x) "d"x`
= `int_1^oo x^2(3/x^4) "d"x`
= `3/x^2 "d"x`
= `3int_1^oo x^2 "d"x`
= `3 [(x^-2 + 1)/(-2 + 1)]`
= `3[x^-1/(-1)]`
= `-3[1/x]_1^oo`
= `-3[1/oo - 1/1]`
= `-3[0 - 1]`
= 3
`"E"(x^2)` = 3
Var(x) = `"E"(x^2) - "E"(x))^2`
= `3 - (3/2)^2`
= `3 - 9/4`
= `(12 - 9)/4`
∴ Var(x) = `3/4`
APPEARS IN
संबंधित प्रश्न
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(2(x - 1), 1 < x ≤ 2),(0, "otherwise"):}`
Four fair coins are tossed once. Find the probability mass function, mean and variance for a number of heads that occurred
The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function
`f(x) = {{:(3"e"^(-3x), x > 0),(0, "eleswhere"):}`
Find the expected life of this electronic equipment
A lottery with 600 tickets gives one prize of ₹ 200, four prizes of ₹ 100, and six prizes of ₹ 50. If the ticket costs is ₹ 2, find the expected winning amount of a ticket
Find the expected value for the random variable of an unbiased die
The following table is describing about the probability mass function of the random variable X
x | 3 | 4 | 5 |
P(x) | 0.2 | 0.3 | 0.5 |
Find the standard deviation of x.
In a business venture a man can make a profit of ₹ 2,000 with a probability of 0.4 or have a loss of ₹ 1,000 with a probability of 0.6. What is his expected, variance and standard deviation of profit?
The number of miles an automobile tire lasts before it reaches a critical point in tread wear can be represented by a p.d.f.
f(x) = `{{:(1/30 "e"^(- x/30)",", "for" x > 0),(0",", "for" x ≤ 0):}`
Find the expected number of miles (in thousands) a tire would last until it reaches the critical tread wear point
Choose the correct alternative:
A probability density function may be represented by
Choose the correct alternative:
E[X – E(X)] is equal to