मराठी

मान लीजिए फलन f: R → R, f(x) = cosx, ∀ x ∈ R द्वारा परिभाषित है। सिद्ध कीजिए कि f न तो एकैकी है और न ही आच्छादक (आच्छादि) है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

मान लीजिए फलन f: R → R, f(x) = cosx, ∀ x ∈ R द्वारा परिभाषित है। सिद्ध कीजिए कि f न तो एकैकी है और न ही आच्छादक (आच्छादि) है।

बेरीज

उत्तर

हमारे पास है,

f: R → R, f(x) = cos x

अब,

f(x1) = f(x2)

cos x1 = cos x2

x1 = 2nπ ± x2, n ∈ Z

यह देखा गया है कि उपरोक्त समीकरण में x1 और xके अनंत हल हैं।

अत: f(x) अनेक फलन है।

साथ ही cos x का परिसर [–1, 1], है, जो दिए गए सह-प्रदेश R का उपसमुच्चय है।

इसलिए, दिया गया फलन आच्छादक नहीं है।

shaalaa.com
संबंध एवं फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: संबंध एव फलन - प्रश्नावली [पृष्ठ १२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 1 संबंध एव फलन
प्रश्नावली | Q 11 | पृष्ठ १२

संबंधित प्रश्‍न

मान लीजिए कि फलन f : R → R , f (x) = 4x – 1, ∀ x ∈ R द्वारा परिभषित है, तो सिद्ध कीजिए कि f एकैकी है।


मान लीजिए कि f : R → R, f (x) = 4x – 3 ∀ x ∈ R द्वारा परिभषित एक फलन है, तो f –1 लिखिए।


यदि f = {(5, 2), (6, 3)} तथा g = {(2, 5), (3, 6)}, तो f तथा g के परिसर लिखिए।


यदि A = {1, 2, 3} तथा f, g, A × A के उप-समुच्चय के संग निम्नलिखित प्रकार सूचित संबंध हैं

f = {(1, 3), (2, 3), (3, 2)}

g = {(1, 2), (1, 3), (3, 1)}

f तथा g में से कौन फलन है और क्यों?


प्राकृत संख्याओं के समुच्चय N में m * n = g.c.d (m, n), m, n ∈ N द्वारा द्वि-आधारी- संक्रिया * परिभाषित कीजिए।क्या संक्रिया * कर्मविनिमेय तथा साहचर्य है?


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

 a, b ∈ Q के लिए a * b = `"ab"/4` 


f (x) = `sqrt(x^2  –3x +2)`  द्वारा परिभषित फलन f : R → R का प्रांत ______ है। 


मान लीजिए कि R वास्तविक संख्याओं का समुच्चय है तथा R में एक द्वि-आधारी संक्रिया * इस प्रकार परिभाषित है कि a * b = a + b – ab ∀ a, b ∈ R. तो द्वि-आधारी संक्रिया * के लिए तत्समक अवयव ______ है।


समुच्चय A = {1, 2, 3} तथा R = {(1, 2), (1, 3)} पर विचार कीजिए। R एक संक्रामक संबंध है।


समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f आच्छादी है तो f तथा g भी आच्छादी हैं। 


मान लीजिए कि D, f(x) = `sqrt(25 - x^2)` द्वारा परिभाषित, वास्तविक मान फलन f का प्रांत है तो D को लिखिए।


मान लीजिए कि f: R → R फलन f(x) = 2x – 3 ∀ x ∈ R द्वारा परिभाषित है। f–1 लिखिए।


क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।

{(a, b): a एक व्यक्ति है, b पूर्वज है a का}


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

g = {(1, 4), (2, 4), (3, 4)}


यदि फलन f: A → B तथा g: B → A, g o f = IA को संतुष्ट करता हैं, तो सिद्ध कीजिए कि f एकैक है तथा g आच्छादक है।


दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :

A से B में एक एकैक प्रतिचित्रण।


एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

एकैकी है किंतु आच्छादक नहीं है।


एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

न तो एकैकी है और न आच्छादक है।


मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलनएकैकी, आच्छादक या एकैकी आच्छादी हैं:

g(x) = |x|


मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:

h(x) = x|x|


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x y किसी पूर्णाक का वर्ग है,  x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?

a * b = (a – b)2 ∀ a, b ∈ Q


मान लीजिए कि हम R में एक संबंध R इस प्रकार परिभाषित करें aRb यदि a ≥ b, तो R _________ है।


Q ~ {0} में  a * b = ` (ab)/2` ∀ a, b ∈ Q ~ {0} प्रकार से परिभाषित द्वि-आधारी संक्रिया * का (के लिए) तत्सम अवयव ______ है।


मान लीजिए f: R → R f(x) = x3 + 5 द्वारा परिभाषित एक फलन है, तो f–1(x)  ______ है।


मान लीजिए f: A → B तथा g: B → C एकैकी आच्छादी फलन हैं, तो (g o f)-1 ______ है।


मान लीजिए कि f: R → R f(x) = tan x द्वारा दत्त है, तो f-1(1) _______ है।


यदि f(x) = (4 - (x - 7)3}, तो f–1(x) = ______।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×