Advertisements
Advertisements
प्रश्न
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x y किसी पूर्णाक का वर्ग है, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
उत्तर
दिया गया है, xy एक पूर्णांक x का वर्ग है, x, y ∈ N
R = {(x, y): xy एक पूर्णांक x का एक वर्ग है, y ∈ N}
यह स्पष्ट रूप से(x, x) ∈ R, ∀ x ∈ N है।
चूंकि x2 किसी भी x ∈ N के लिए एक पूर्णांक का वर्ग है।
इस प्रकार, R प्रतिवर्त है।
If (x, y) ∈ R ⇒ (y, x) ∈ R
अतः R सममित है।
अब, यदि xy एक पूर्णांक का वर्ग है और yz एक पूर्णांक का वर्ग है।
फिर, मान लीजिए xy = m2 और yz = n2 कुछ m के लिए, n ∈ Z
x =`"m"^2/y` और z = `x^2/y`
xz = `("m"^2"n"^2)/y^2`, जो एक पूर्णांक का वर्ग है।
इस प्रकार, R संक्रामक है।
APPEARS IN
संबंधित प्रश्न
फलन f(x) = f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)` का प्रांत ज्ञात कीजिए।
क्या Z (पूर्णांकों का समुच्चय) में m * n = m – n + mn ∀ m, n ∈ Z द्वारा परिभाषित द्विआधारी-संक्रिया * कर्म -विनिमेय है?
यदि A = {a, b, c, d} तथा f = {a, b), (b, d), (c, a), (d, c)} तो सिद्ध कीजिए कि f एकैकी है तथा A से A पर आच्छादि है। f –1 भी ज्ञात कीजिए।
मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f
अवयवों वाले समुच्चय A पर विचार कीजिए। A से स्वयं A पर एकैकी आच्छादक फलनों की कुल संख्या ______ है।
समुच्चय A = {1, 2, 3} तथा R = {(1, 2), (1, 3)} पर विचार कीजिए। R एक संक्रामक संबंध है।
समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f आच्छादी है तो f तथा g भी आच्छादी हैं।
मान लीजिए कि A = {a, b, c} तथा A में परिभाषित संबंध R निम्नलिखित है:
R = {(a, a), (b, c), (a, b)}. तो उन क्रमित युग्मों की, कम से कम, संख्या लिखिए, जिनको R में जोड़ने से R स्वतुल्य तथा संक्रामक बन जाता है।
क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।
{(x, y): x एक व्यक्ति है, y माँ है x की}
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
f = {(1, 4), (1, 5), (2, 4), (3, 5)}
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
एकैकी नहीं है किंतु आच्छादक है।
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o g ज्ञात कीजिए:
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए:
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o g ज्ञात कीजिए:
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a + ab ∀ a, b ∈ Q
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = (a – b)2 ∀ a, b ∈ Q
मान लीजिए कि R में द्वारा द्वि-आधारी *, a * b = 1 + ab, ∀ a, b ∈ R तो संक्रिया *
मान लीजिए कि A = {1, 2, 3} संबंध R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}, पर विचार कीजिए, तो R _________ है।
मान लीजिए कि f: R → R f(x) = 3x2 - 5 द्वारा तथा g: R → R g(x) = `x/(x^2 + 1)` द्वारा परिभाषित है, तो g o f ______ है।
मान लीजिए कि f: R → R, f(x) = `x/sqrt(1 + x^2)` द्वारा परिभाषित है, तो ( f o f o f ) (x) = ______।
यदि f(x) = (4 - (x - 7)3}, तो f–1(x) = ______।
मान लीजिए f: R → R, f(x) = sin (3x+2) ∀ x ∈ R द्वारा परिभाषित एक फलन है। तो f व्युत्क्रमणीय है।
एक पूर्णांक m एक अन्य पूर्णांक n से संबंधित कहालाता है, यदि m, एक पूर्णांकीय गुणज है n का। Z में इस प्रकार का संबंध स्वतुल्य, सममित तथा संक्रामक होता है।
मान लीजिए A = {0, 1} और N प्राकृत संख्याओं का समुच्चय है, तो f(2n – 1) = 0, f(2n) = 1, ∀ n∈ N द्वारा परिभाषित प्रतिचित्रण f: N → A आच्छादक है।
फलनों का संयोजन साहचर्य होता है।